
RL-TR-96-9
Final Technical Report
February 1996

ROME LABORATORY
INTEGRATED DIAGNOSTIC
(ID) WORKBENCH

NT Research Institute

C. Richard Unkle

(»HO QUALITY INSPECTED *

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960611 064
Rome Laboratory

Air Force Materiel Command
Rome, New York

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR- 96-9 has been reviewed and is approved for publication.

APPROVED: y
farfr ft* tfoff

JAMES M. NAGY
Project Engineer

FOR THE COMMANDER:
""ViA^A . U OA^)

JOHN J. BART
Chief Scientist, Reliability Sciences
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(ERDD), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE

PUbte mooning BLftfcn »or ink oofccdon of htorraien a aarr«»d <D ■nragti hour pvreapora«,ndudnQ1nitrra for iw«»«ng r«nxdor» ■—ü i g «mg an ma»
jilt"ii j nil ■!■ i IJ I« I>I iiMifci. yt3uj)M«<ng«-«a'»»—'•fl°'»<^'m"i^il'arr«m'i Sandoormwt»rurdtngm»OLfdnarmior wy oniaddn
ujfcUJui of idjitlm reorjng mjain fn reducing If* buroan. to Waa-iguji HaadojatOT Savtoa», Oruoa far ifmiaUjr* Ouaakj» B-aRaparts, 1213 JaTa»cn
Para mgnwa/, Sit« 1ZX Arfr^cn VA aZB-43R «^ m in» 0"*=" ■* Ma-agama-i id Budga. Pajawcr* BadLpkm Pro|aa [OTOt-01 M>. W«#-rqay\ DC 2080.

1. AGENCY USE ONLY (LMV* Blank) Z REPORT DATE

February 1996
a REPORT TYPE AND DATES COVERED

Final Feb 95 - Apr 95
4. TITLE AND SUBTITLE

ROME LABORATORY INTEGRATED DIAGNOSTIC (ID) WORKBENCH

& AUTHOR(S)

C. Richard Unkle

5. FUNDING NUMBERS

C - F30602-94-C-0087
PE - 65802S
PR - 6528
TA - 01
WU - 13

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

IIT Research Institute
Reliability Analysis Center
P.O. Box 4700
Rome NY 13442-4700

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory/ERDD
525 Brooks Rd
Rome NY 13441-4505

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A
10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

RL-TR-96-9

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: James M. Nagy/ERDD/(315) 330-2241

12a. DISTRIBUnON/AVAJLABJLiTY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1a ABSTRACT(M"*rv«T'W>»ord»)

Integrated Diagnostics help reduce costs and improve mobility and mission
effectiveness. Integrated diagnostics start when a product is first designed and
developed, and conclude only when the product is no longer in use. The integrated
diagnostic workbench automates how a test program set (TPS) is developed. A
TPS is used on an automated test system (ATS) to verify and diagnose circuits,
modules, and systems against a set of expected responses induced by a forced stimulus.
This set of expected responses and a forced stimulus is referred to as a vector
set. The purpose of such an integration effort is to facilitate more efficient and
cost effective development and documentation of test programs for electronic systems
and equipment. The goal of these efforts is to reduce both the initial and rehost
generation time and cost of TPSs, and to allow greater flexibility when workload is
determined. The Rome Laboratory Integrated Diagnostic (ID) Workbench is a set of
integrated diagnostic tools executed from a common graphical user interface (GUI).
The tools that compose the workbench are broken into two main categories, test
automation and vector translation.

14. SUBJECT TERMS

Diagnostics, Testing, Integrated diagnostics, Workbench

11 NUMBER OF PAGES
88.

17. SECURITY CLASSnCATION

UNftMWlED
1a SECURITY CLASSFICATrON

OF THIS PAGE
UNCLASSIFIED

1 a SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

1ft PNCE CODE

20. UMITATION OF ABSTRACT

SAR

NSN7S4001-210*00
Standao Par" ?m -r- . ■*?
Praacrtaaey ANS- S-.a :»■»
2M-10Z

TABLE OF CONTENTS

1.0 Introduction 1

2.0 Toolset Overview 5

2.1 WAVES Testbench Writer Program 5
2.2 Vector Translation Tools 6

3.0 Operating the ID Workbench 11

3.1 Tool Operation 11
3.2 Tool Descriptions 18

4.0 An Example 28

4.1 Generating a Board-Level TPS for the GenRad 2751 28

References 39

Appendix A Tester Independent Support Software System (TISSS) A-l

Appendix B The TISSS Toolset (T2) B-l

Appendix C Example Figures and Files C-l

LIST OF TABLES AND FIGURES

TABLE 1.1 DIAGNOSTIC TOOLS CURRENTLY PART OF THE RL ID
WORKBENCH 1

TABLE 2.1 WAVES TESTBENCH WRITER INPUT FILES 5
TABLE 3.1-1 ID WORKBENCH FUNCTIONS 18
TABLE Bl .POW FILE FIELD DESCRIPTIONS AND RULES B-5
TABLE B2 DEVICE PIN CROSS REFERENCE LIST B-8

FIGURE 1.1 CURRENT TOOLSET OPERATION FLOW 2
FIGURE 2.1 WAVES TESTBENCH WRITER INPUT AND OUTPUT 5
FIGURE 2.2 VECTOR TRANSLATION TOOL INPUT AND OUTPUT 7
FIGURE 2.3 SAMPLE TRF FOR A D-FLIP FLOP DEVICE 8
FIGURE 2.4 TRF-TO-TDL & IN-STEP INPUT AND OUTPUT 10
FIGURE 3.1 ID WORKBENCH MAIN SCREEN 12
FIGURE 3.2 EXAMPLE TOOL INPUT SCREEN , 13
FIGURE 3.3 SELECTING A FILE 14
FIGURE 3.4 EXAMPLE OUTPUT MESSAGES FOR THE GENERATE WAVES

TESTBENCH TOOL 15
FIGURE 3.5 OUTPUT FILE VIEWING WINDOW 16
FIGURE 3.6 EXPORT FILE SELECTION SCREEN 17
FIGURE 3.8 GENERATE WAVES TESTBENCH INPUT SCREEN 20
FIGURE 3.9 GENERATE WAVES FLATTENER TNFUT SCREEN 21
FIGURE 3.10 GENERATE PARTIAL LOOKUP TABLE INPUT SCREEN 22
FIGURE 3.11 GENERATE VECTOR DATABASE INPUT SCREEN 24
FIGURE 3.12 SELECTING THE OUTPUT OF THE TESTBENCH SIMULATION

FILENAME 25
FIGURE 3.13 INITIAL INPUT SCREEN FOR GR2751 TRANSLATOR (TGO)

TOOL 26
FIGURE 3.14 INITIAL INPUT SCREEN FOR GENERATE TDL TOOL 27
FIGURE 4.1 PARTIAL LOOKUP TABLE SCREEN 30
FIGURE 4.2 OUTPUT FILE SELECTION SCREEN 31
FIGURE 4.3 TEXT EDITOR SCREEN 32
FIGURE 4.4 WAVES TESTBENCH GENERATOR SCREEN 33
FIGURE 4.5 WAVES TESTBENCH OUTPUT FILES 34
FIGURE 4.6 GENERATE VECTOR DATABASE SCREEN 35
FIGURE 4.7 GR2751 TRANSLATOR SCREEN 36
FIGURE 4.8 VECTOR TRANSLATION OUTPUT FILES 37
FIGURE 4.9 GENERATE TDL SCREEN 38
FIGURE Al EXAMPLE OF A TISSS ENVIRONMENT A-2
FIGURE A2 EXAMPLE IN-STEP EXECUTION A-4
FIGURE A3 EXAMPLE TEST AUTOMATION PROCESS USING TISSSA-5
FIGURE Bl T2 I/O REQUIREMENTS FOR THE GENRAD 2751 B-2
FIGURE B2 EXECUTION OF VECTOR TRANSLATION TOOL "Generate Vector

Database" B-ll
FIGURE Cl EXAMPLE CIRCUIT C-2
FIGURE Cl.l VHDL STRUCTURAL DESCRIPTION FOR EXAMPLE CIRCUIT C-3

ii

1.0 INTRODUCTION

The Rome Laboratory (RL) Integrated Diagnostic (ID) Workbench is part of an
on-going effort at RL to develop and integrate diagnostic tools and techniques. The
purpose of such integration efforts is to facilitate more efficient and cost effective
development and documentation of test programs for electronic systems and
equipment. The RL ID Workbench is a prototype package that allows multiple tools
to be executed from a common graphical user interface (GUI). The tools that are
currently part of the workbench are listed in Table 1.1.

TABLE 1.1: DIAGNOSTIC TOOLS CURRENTLY PART OF THE RL ID
WORKBENCH

TOOL NAME ID WORKBENCH
OPTION

DESCRIPTION

WAVES TESTBENCH
WRITER

Test Automation Tool
- GENERATE WAVES

TESTBENCH

Currently takes a VHDL
structural only file of a printed

circuit board and develops a
VHDL simulation testbench,

with nodal analysis
capabilities, compatible with
the Waveform and Vector

Exchange Specification
(WAVES) (IEEE Std.

1029.1991).
TRF WRITER Vector Translation Tool

- GENERATE VECTOR
DATABASE

Develops a test requirements
file(TRF) from information

contained in the output of the
VHDL/WAVES testbench

simulation and a file
containing the VHDL signal
names cross-referenced to
actual device pin names

TRF-TO-TDL
TRANSLATOR

Vector Translation Tool
- GENERATE TDL

Translates a TRF into a Test
Description Language (TDL)
file compatible with the IN-

STEP program
VECTOR

TRANSLATOR
Vector Translation Tool
- GENERATE VECTOR

DATABASE
- GR2751

TRANSLATOR

Translates digital test vectors
captured as output of the

testbench referred to above,
into vector files compatible

with the Genisvs™ TPS
development toolset from

GenRad Inc.

In addition to the above listed tools, the ID Workbench contains other utilities that
are explained in Section 3.0 and in Appendixes A-C.

Figure 1.1 provides an overview of how the tools are currently designed to function.
The toolset depicted in Figure 1.1 was designed to aid in the development of a test
program set (TPS) for digital printed circuit boards whose design information is
captured in the Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language (VHDL). The tools are also designed to work with Unit Under Test (UUT)
digital vector information captured in the Waveform and Vector Exchange
Specification (WAVES), a sister standard to IEEE Standard 1076, VHDL.

| TRF —►(§)

WAVES
vector file
iranslator

CD—&
TRl:-lo-n.)I
translator

TDL
Files

/
Pins File

GENRAD
Specific
Template
Files

FIGURE 1.1: CURRENT TOOLSET OPERATION FLOW

Much of the process is tester independent (i.e., the tools are not designed with any
particular tester file formats in mind). However, at some point in time, the tester
being used to host the TPS must be considered. In this case, the current set of tools
are compatible with a GenRad 275X series board tester. Figure 1.1 reflects the file
formats associated with the GenRad tester. These formats are explained in more
detail in Section 2.0, Toolset Overview.

The current set of tools integrated within the ID Workbench are designed to operate
as depicted in the flow diagram of Figure 1.1. The initial step in the process is to
create a VHDL testbench using a VHDL structural model as input. Other files
shown (i.e., .CON, .POW, etc.) as inputs to the WAVES testbench writer tool are
needed for development of test vector information and files required for test by
most ATE. The .CON file is an ASCII file that identifies the size of the board's
physical connector, and maps the connector pin numbers to the pin names. The pin
names are external signal names contained in the VHDL file (s). The .POW file is
another ASCII file that contains a list of all voltage supply signals used on the board.
In addition, the nominal voltage values, maximum current values, and ground
signal name that corresponds to each voltage signal are also listed in this file.

The final input, "component lookup table" is a lookup table for each of the
individual components contained in the VHDL structural file. This file provides a
list of each component's pin name, pin number, and pin direction. The pin name is
the generic component pin name, and the pin number is the terminal number.
Each of the three input files described, .CON, .POW and component lookup, are
necessary to create the GenRad specific files shown in Figure 1.1 (.ADS, .CCT). These
files are required by the tester, and similar files are typically needed by all testers.
Further details on the input files described can be found in Appendix B.

The primary output of the WAVES testbench writer is a simulatable testbench that
uses the stimulus information represented in the WAVES format. Additional
outputs of the tool, as shown in the figure are required for other down stream
processes or by the target ATE. The ID workbench does contain a utility that will
develop a partial lookup table from the VHDL input file. The partial table is then
completed manually using a text editor.

The testbench is designed to capture test vector information in a generic format.
Output information, as well as internal nodal data (used for diagnostics) are
captured from the testbench in an RL develop standard format, including any
required timing information. This data is then used by the Vector Translation tools
to develop tester specific test vector files. An additional output of these tools is the
test requirement file (TRF) that is used to create a complete set of TDL files for the
UUT using the TRF-to-TDL translator. The final step in the process is to use the
TDL information to create the remaining ATE test files using ATE specific template
files and the IN-STEP program. The IN-STEP is not currently part of the ID
Workbench, but can be executed separately .

Another tool shown in Figure 1.1, but also not yet part of the ID workbench, is the
WAVES Vector File Translator. This tool currently takes a vector file in the
GenRad 275X format, and creates a WAVES formatted external vector file that can
be used to drive the VHDL/WAVES testbench. This tool currently runs on a PC, the
primary reason that it is not part of the current version of the ID Workbench. It is
not known at this time if there are plans to port this tool to the SUN environment.

2.0 TOOLSET OVERVIEW

2.1 WAVES Testbench Writer Program

This program is currently designed to generate several outputs, given the
specific input files previously described and repeated in Figure 2.1. A list of the
required input files for this program, and their description is given in Table 2.1

G CON

VHDL
w/o
TB

(i POW

V
WAVES
testbench
writer

_7

 JP** j

component
lookup table

.ADS

.CCTIilos

VHDL
iili

signal i/o
+ direction

FIGURE 2.1: WAVES TESTBENCH WRITER INPUT AND OUTPUT

TABLE 2.1: WAVES TESTBENCH WRITER INPUT FILES

INPUT FILE DESCRIPTION
VHDL W/O TB A structural only VHDL description file of a UUT

.CON A file listing the UUT connector type, number of
pins, and pin names

.POW A file that lists the UUT voltage supply values,
including corresponding current values and ground

signal names
.TBL A file listing each UUT component and all generic

pin names, pin numbers, and pin I/O direction

The connector, power, and component files are currently required to create GenRad
2751 specific files listed as '.ADS' and '.CCT in Figure 2.1. These files are used by the
GenRad Genisys™ tools in creating a TPS for the GenRad tester. It is assumed that

similar files will be needed by other testers and, therefore, the .CON, .POW, and
.TBL input files will be relevant to several testers, although slight modifications will
be needed from tester to tester.

The primary output of the WAVES Testbench Writer tool is a WAVES compatible
VHDL testbench that can be used to develop test vectors for the UUT. The testbench
created is compatible with vector information contained in the WAVES formats,
using an external file for the raw vector data. The testbench, noted as 'VHDL w/tb'
in Figure 2.1 needs to be simulated by a VHDL simulator to produce the necessary
vector information.

One additional file created by the WAVES TESTBENCH WRITER is the 'signal i/o +
direction' file that is used in a down stream process to help translate vector
information produced during simulation to a tester specific format (GenRad 275X in
this case). This file is also used to aid in the creation of the TRF for the UUT. The
name of the 'signal i/o + direction' file is <filename>.sigs, where <filename> is the
same as the VHDL input file.

Appendix A-C provides more detailed information on both input and output file
formats.

2.2 Vector Translation Tools

The Vector Translation Tools are listed below. Each of these tools are
described within the following subsections of the report.

• Vector Translator
® TRF Writer
• TRF-to-TDL Translator

2.2.1 Vector Translator

The tool known as the Vector Translator tool is really two processes
combined into a single tool. One process is called "tb_to_nodes", and the other
process is called "nodes_to_tgo". The flow diagram for this tool is shown in Figure
2.2.

WAVES
Data Set
w/external
vectorfile

Vcfiir-r
Translation
Too!::.

—^

/ 1 .CAP
.CTX
TGO

FIGURE 2.2: VECTOR TRANSLATION TOOL INPUT AND OUTPUT

2.2.1.1 tb_to_nodes and nodes_to_tgo

The tb_to_nodes process creates two different outputs from UUT nodal
information captured via simulation of the testbench described previously. The
other input is the signal i/o + direction file, also described previously. One output is
the input file required by the nodes_to_tgo process, and the other is a probing or
diagnostics database to be used for troubleshooting. The probing data is written in
the GenRad 275X tester format. This file is called the <filename>.cap file, where
<filename> is the name of the input file (nodal information file) to the Vector
Translator tool. The second output, which is the input to the nodes_to_tgo process,
is called <filename>.nodes. The "nodes_to_tgo" process translates primary i/o
information captured via simulation of the VHDL/WAVES testbench, into a format
called "tgo" which is the test vector format required by the GenRad 275X board
tester.

2.2.2 TRF Writer

The TRF Writer utility creates a test requirements file (TRF) based on
information contained in the connector and power input files described above, as
well as the vector file generated during simulation of the VHDL/WAVES testbench.
The TRF is an intermediate format file that contains information relevant to testing
electrical parameters, such as current and voltage, of a UUT. The TRF is used to
generate a Test Description Language (TDL) file and 'PINS' file that are required as
input to the IN-STEP tool. (Note that the IN-STEP tool is not currently part of the
ID WORKBENCH interface program.) An example TRF is provided below as Figure
2.3. See reference [1] for more information on the TRF.

FILES:

— The .tdl and .pins files will have the same base name as this .trf file
trf = master; - (in) master.trf.xxx are the TDL templates
waves = sample_waves; - WAVES data set referenced in TDL

VALUES: — symbolic values for TDL

NUMJVEC = 100; -- needed for TDL templates

VIL1 = 0.7 v; - TDL does not permit
VIH1 = 2.0 v; - more than one value for VIL, VIH
DHL = 40 ua;
IIL1 = -0.8 ma;

VOH1 = 2.5 v;
VOLl = 0.4v;
IOH1 = -400 ua;
IOL1 = 4.0 ma;

— Positive supply:
VCCI = 5 v;
MAXJVCCl = 5.5 v;
MINVCC1 = 4.5 v;

ICC1 = 8 ma;
MAXJCCl = 40 ma; — about five times the spec value

VGG = 0v;
MAX_VGG = 0v;
MINVGG = 0 v;

IGG = -10 a;
MAXJGG = -10 a;

DEFAULTS:

- The defaults *must* use the symbolic values
- defined above in the "VALUES:" section.
- That is, in this section use statements such
- as "VOH = VOH1" instead of "VOH = 3.0 V".

- Values for VOH, VOL, IOH, IOL, VIH, VIL
- *must* be provided as defaults because they are used
- in the xxx.TRF.MAIN file.

VOH = VOH1; - every pin gets this, if specified,
VOL = VOL1; - but the defaults can be overridden
VIL = VIL1;
VIH = VIH1;

FIGURE 2.3. SAMPLE TRF FOR A D-FLIP FLOP DEVICE

IIL = ULI;
IIH = IIH1;
IOH = IOH1;
IOL = IOL1;

PINS:

name = CLR1, type = INPUT, pin = 1, term = 1;
name = PRE1, type = INPUT, pin = 2, term = 4;
name = Dl, type = INPUT, pin = 3, term = 2;
name = CLK1, type = INPUT, pin = 4, term = 3;
name = CLR2, type = INPUT, pin = 5, term = 13;
name = PRE2, type = INPUT, pin = 6, term = 10;
name = D2, type = INPUT, pin = 7, term = 12;
name = CLK2, type = INPUT, pin = 8, term = 11;
name = Ql, type = OUTPUT, pin = 9, term = 5;
name = QB1, type = OUTPUT, pin = 10, term = 6;
name = Q2, type = OUTPUT, pin = 11, term = 9;
name = QB2, type = OUTPUT, pin = 12, term = 8;
name = GND, type = POWER, pin = 0, term = 7,

supply jvoltage = VGG,
max_supply_voltage = MAX__VGG, min_supply_voltage = MINJVGG,

supply_current = IGG,
max_supply_current = MAXJGG;

name = VCC, type = POWER, pin = 0, term = 14,
supply_voltage = VCCI,

max__supply_voltage = MAX_VCC1, min_supply_voltage = MINJVCC1,
supply_current = ICC1,

max_supply_current = MAXJCC1;

FIGURE 2.3. SAMPLE TRF FOR A D-FLIP FLOP DEVICE - CONTINUED

2.2.3 TRF-TO-TDL Translator

The TRF-to-TDL Translator tool takes the information captured in the TRF,
and produces several files, as shown in Figure 2.4 below. These files, which
collectively form a TDL description file, when combined with specific ATE template
files, are used by the IN-STEP to produce tester specific test program files. A brief
explanation of TDL is provided here. A more complete description can be found in
reference [2].

<D—P-
(see Fig. 2.2)

iRIMn-M);.

translator

TDL
Files

Pins File

I.V-S J ::i»!

GENRAD
Specific
Template
Files

.TSR !

FIGURE 2.4. TRF-TO-TDL & IN-STEP INPUT AND OUTPUT

2.2.3.1 TDL

The Test Description Language (TDL) is a non-proprietary data format that
was developed during early stages of RL's Tester Independent Support Software
System (TISSS) program as a means for capturing digital component test
requirements information, such as absolute maximum ratings for current, voltage,
etc., power conditions, drive/load conditions, and recommended operating
conditions. While the TDL describes test requirements and test specifications, it is
not intended to provide descriptions of test methodologies. Capture of test
requirements, specifications, sequencing, and intent is supported via two high level
structures: the test philosophy specification and the test instantiation specification.
The test philosophy specification is used to describe sets of tests used for the
validation units and unit classes within a particular technology type (e.g., TTL,
CMOS, etc.). The test instantiation specification is a hierarchical structure that
contains two main parts, the pin definition specification and the test plan build
specification. The pin definition specification describes the pin characteristics of all
pins on the UUT and groups UUT pins into pin sets. The test plan build
specification specifies the tests and sets of tests, their sequencing and all parametric
data that are required to validate the UUT according to one of the test qualifications
in what is known as the Electrical Test Requirements table, found in the test
philosophy file described previously.

10

3.0 OPERATING THE ID WORKBENCH

The ID Workbench software tool currently runs on a SUN Sparc workstation,
and requires X-WINDOWS to operate. The executable file for the ID Workbench is
called 'wkbench.x', and should be installed in an appropriate directory on the users
workstation. Once the executable is installed, the following set environment
statements must be added to the user's '.cshrc' file:

WORKBENCHJEXES_LOCATION=/directory path>
WORKBENCH_TEXT_EDITOR=textedit

In the first command above, <directory path> is the complete directory path to the
location of the wkbench.x executable file. The following is provided as an example:

WORKBENCH_EXES_LOC ATION= /home /vortex / elef ante /WORKBENCH /
RUNTIME

The second command above is needed to define the text editor that the ID
Workbench program will use to display and modify files created by the various tools
described herein.

Given that the user is logged onto the SUN system and is in the directory containing
the ID Workbench executable program, simply type 'wkbench.x' and press enter.
The main screen shown in Figure 3.1 should appear as a result. From the main
screen, three options are available: Test Automation Tools, Vector Translation
Tools, and Exit.

3.1 TOOL OPERATION

Clicking on either the Test Automation Tools option or the Vector
Translation Tools option will produce a list of tools that can be executed from the ID
Workbench. For instance, clicking on Test Automation Tools presents the
following list of tools:

8 Generate WAVES Testbench
• Generate WAVES Flattener
• Generate Probe Database
• Generate Partial Lookup Table
• Generate GENRAD CKT file

Clicking on any listed tool produces the screen shown in Figure 3.2, which shows
the "Generate WAVES Testbench" as an example. The screen will show the input
files that are required to execute the tool.

11

Test An&Broatiom Tools ': Vector IicsBslsLtivm Tods h

"N
■ mi -

L. r
"■■■ -*-.r^.*! ■',■.:■■■:.■. ■

11

FIGURE 3.1: ID WORKBENCH MAIN SCREEN

Clicking on any of the "Browse" buttons will bring up a window showing a list of
files in the current directory from which to choose. The user may also type in the
directory path and filename. The full directory path is required as the ID
Workbench makes no assumptions as to where files exist, while allowing them to
exist in any user directory and /or sub directory. For each of the file selections (e.g.,
connector, lookup table, power and VHDL), a filter has been set to show only those
files with the expected extension. For the connector filename, for example, all files
with a '.con' extension are displayed. Likewise for the lookup table filename, files
with a '.tbl' extension are displayed, '.pow' for the power filename, and '.vhd' for
the VHDL filename. All extensions are in lower case. An example of what is
displayed when the Browse button for the power filename is selected is shown in
Figure 3.3.

12

(iciiarvjli1 '.;.''.»i S 1 i<si;>cnc!i i

I ho cciiiiicftor f i i snomc

Browsed j

I he lookup Ic.'rAi) f Monome

Browse ' '

lh<; povcr f I I Oiiomc

Browse

I he VIIDI f'i loriMinc

Browse;

.Import,} Lxport

Run I Iii' I i-ciiis I fj t ion

^-f«. «••' ■■■■■%y„.'--i..^,-t .*:.J. .,t.-.,,.w, Mi

I ;;i i

Ourput !-1c!,sufjos ("icn:»rulrfl

! ri'or ::o.s*-u<jos dtini'-.-ui ot\

111

1£?!W: P

FIGURE 3.2: EXAMPLE TOOL INPUT SCREEN

13

lie Selection

/expoitfhome2/elefante/TOOLSj3UI/INPU"n

Filter Clear Filter
&$&$@8$®8&i$@$$ffii sasssaissüass:; •>.$%%%&%$&§$&$%$$.

FIGURE 3.3: SELECTING A FILE

The filter of "*.pow" is being applied to the current working directory which is
/export/home2/elefante/TOOLS_GUI/INPUTS for this example. If there are no
files with the .pow extension, then the user must either change directories until the
correct file is found, or the filename may not have the .pow extension. In this latter
case, clicking on the "Clear Filter" button will enable the user to see all files
contained within this directory. Note in the Figure that the current directory being
viewed is indicated by the single period ending. To move one level above this,
double click on the directory name having two periods at the end (i.e.,
/export/home2/elefante/TOOLS_GUI/INPUTS/..)- Changing to any of the other
directories listed is also possible by double clicking the mouse while the mouse
pointer is on the directory name, or by highlighting the directory name and clicking
the OK button. Once the file desired is listed in the files window, double click on the

14

file name, or highlight it with a single click and click on the OK button to select it.
To reset the Filter, simply click on the Filter button.

Once all of the appropriate files have been selected, click on the "Run the
translation" button to execute the selected tool. If there are no errors, information
will appear in the "Output Messages Generated" window shown in Figure 3.1. An
example of this for the Generate WAVES Testbench tool is provided in Figure 3.4.
If errors do occur, any error messages generated are captured and presented in the
Error Messages Generated window. Upon completion of any one of the tools, the
window shown in Figure 3.5 will appear that enables viewing of all output files
generated by the tool being used.

sReading, parsing and building a lookup table from Vexport/horae2/elefante/T
*(rani i rig t h« nel- lisi f'i I o: "!r i I i ny ■() 'Vpjtporl /iionu'7/.Tl ..- r'ariLc/ i Oiii S (,Ui ! rtPU i
R.-adin.j and parsiny lh:= VIIUl moc':-! in "/c^por [./inw.c//;-\ cf on« ü/UJÖl S fiUUKPlir

I Reading and parsing the connector file in Vexport/home2/elefante/T00S GUIIN
fReading ond parsing the power file in "/export/home2/elefante/T00lS„GUilNPUT
^Creating signals File:Wpiting to B/export/homeZ/elefante/T00LS_GUIINPUTS/5Z

Creating assembly data set file:Briting to B/export/homeZ/elefante/TOOLS_QU

I n-or Iios.-.cjgo, (.iiiii'iifii'd

M

FIGURE 3.4. EXAMPLE OUTPUT MESSAGES FOR THE GENERATE WAVES
TESTBENCH TOOL

As an example, Figure 3.5 shows the files that were generated by the Generate
WAVES Testbench tool for VHDL input file "ioc_630.vhd". Clicking on any of the
files listed will automatically put the file in a text editor where it can be viewed
and/or modified as necessary. Once exiting out of the editor, click on EXIT, where
shown in the above figure, to return to the main program screen.

15

. . . .

Sect to d Bsp lay an owcpyy: If nile„„.
—Smt wn>)SKismms&M^SWt'M 'gSfllllfÄf^f Isffi^^Hf ' . V'~. „f'SWZ' "<.*

s^ _m^.ß.D^

soe_
jgSÖ.CCT
_630.S!GS
ioc_630.VHD

~ = _ Il
lll

ll
*

i

- ■:*:.:■.. EXBT***
'" .

■El
mMMMM

ISIIII

FIGURE 3.5: OUTPUT FILE VIEWING WINDOW

3.1.1. The Import and Export Features

Each of the main tool screens, (Figure 3.1 for example), contains two selected
items named Import and Export. The Export function allows the user to save a set
of input files such that these same files can be "imported" at the filename screen
from a single file, without having to re-select each file individually. The feature
enables multiple runs for the same design to be executed quickly, when the same
input filenames are used. To exercise the export option, simply click on the export
button, after all input files have been selected. This action results in the screen
shown in Figure 3.6. The user then enters a filename, with the extension '.export',
on the filename line to save the input files that have been selected for a specific tool.
The next time the tool is exercised, simply click on the Import button, and all files
with the ".export" extension are listed in the files window as shown in the Figure
3.7. Select the filename with the desired files in it by double clicking on the
filename, or by highlighting the filename and clicking the OK button. All tool input
filenames are then automatically entered into the appropriate place (See Figure 3.1).

3.1.2 Screen Selection Summary

Table 3.1 presents a summary of each of the functions that are available when
running each of the workbench tools. The table shows the name of the function,
the screen where it appears, and the action taken when chosen.

16

Filter

i/export/home2/elefante/TOOLS_GUI/INPUTS/*.export

Directories

WARRENS

■1
Files

Gene rate_P arti al_Lo o k u p_Tab I e. exp o rt |
■; Gene rate_Probe_Database. export j
: Generate_WAVES_Flattener.export |
N Generate_WAVES_Testbench. export j

II Rich!, export \

■I

IHHHJIH^^BIS) m ■MHI

OK Filter Cancel CSear Fifeer

FIGURE 3.6 & 3.7: EXPORT FILE SELECTION SCREEN

17

TABLE 3.1-1: ID WORKBENCH FUNCTIONS

Function Screen/Window Action Example Figure
Browse Main Tool Screen. Used to

quickly select an input
filename needed to execute

the tool

Presents a window showing
the current working

directory and the files in
that directory based on the
current filename extension

filter

See Figure 3.2

Filter Filename Filter Window Turns the current filter back
on. When the filter is on,
only those filenames with
the filtered extension will

be presented in the files
window

See Figures 3.3, 3.6 and 3.7

Clear Filter Filename Filter Window Turns the current browse
filter off, allowing the user
to view and select any/all

filenames

None

Cancel Filename Filter Window Cancels the current
operation and return to the

main tool screen

See Figures 3.3, 3.6 and 3.7

OK Filename Filter Window Enters the highlighted
filename from the files

window into the main tool
screen (not required when

filename is chosen by double
clicking)

See Figures 3.3, 3.6 and 3.7

Run
Translation

All Main Tool Screens Executes the current tool for
the selected input files

See Figure 3.2

Exit All Main Tool Screens and
Main Menu Screen

Exit to Main Menu or Exit
the ID Workbench

See Figure 3.1, 3.2

3.2 TOOL DESCRIPTIONS

Each of the tools that are executable from within the ID Workbench will be
described briefly in this section. Where applicable, references to the general
selections described in Section 3.1 above will be made.

3.2.1 Test Automation Tools

By clicking the Test Automation Tools, the following options are presented:

• Generate WAVES Testbench
• Generate WAVES Flattener
• Generate Probe Database
• Generate Partial Lookup Table
• Generate GENRAD CKT file

18

Generate Probe Database and Generate GENRAD CKT file are currently Alpha
version tools at best. The Vector Translation Tools contain software that will
produce the same results and have been more fully tested. Therefore, while these
options are available, they will not be described in this report. Future updates to the
ID Workbench will not include these options as part of the Test Automation Tools
menu.

3.2.1.1 Generate WAVES Testbench Tool

When this tool is selected, the screen in Figure 3.8 will appear. Note that four
input files are required to execute this tool as described in Section 2.0 and in the flow
diagram of Figure 2.2. Once each of the correct files has been entered using either
the Browse button or manually by the user, then click on Run the translation, and
the WAVES testbench file will be created. This file, along with the appropriate
WAVES dataset files can be simulated to produce vector information needed for
test. Execution of this tool and subsequent simulation of the output must be
performed prior to execution of the Vector Translation Tools that are described in
section 3.2.2.

3.2.1.2 Generate WAVES Flattener

Some older model Automatic Test Equipment (ATE) that are still being used
are less dynamic than more state-of-the-art ATE in that multiple cycle times are not
possible. While all ATE require test vectors to be cyclized, many older ATE can only
handle a single cycle time. In other words, every cycle would be of the same
duration (e.g., 1000 nanoseconds (ns)). This tool was created, therefore, to develop a
testbench that would produce test vector information in equal cycles. Currently, the
testbench is written to create test cycles of 1000 ns in length. This is accomplished by
capturing test vectors in the WAVES format, and then re-capturing the information
using a VHDL simulator. This requires the development of a testbench. Note that
the WAVES Flattener testbench would be executed to produce the test vector file
used as input to the simulation of the testbench produced from the Generate
WAVES Testbench tool. By doing this, the output of the WAVES testbench will
maintain the integrity of the probe database.

The set up and use of this tool within the ID Workbench is exactly the same as
described in Section 3.1 and 3.1.1. Figure 3.9 shows the tool input screen. Note that
the only difference between this tool screen and the previously described one is the
number of input filenames required. All other options are identical and their
description will not be repeated here.

19

(,C:!!.':■ (.'■.:.' '»'■:-. '=r.-..i :):-,:(i.

Ihr: con:ic!t.Lor ii\i:n'juic

Browse|I

!hp lookiv ic!Hi' f L ifiiom?

Browse-i

;ho ;JC)"';:;- { i! aou\a

Browsej ;
0-.-H.C

i'i-.c -'ill)! I i lcufiii:'

Browse i

A^

Run I fie irciialni ioii

~~±-.^^—.-.^

'. A i I.

Ou 1 pu1 iios.S(.!f.i:-ri {.^nc.-ei i:'-

f i-ro; :::-ss(=g:-.s fj:infi-(i:.ro

FIGURE 3.8. GENERATE WAVES TESTBENCH INPUT SCREEN

20

Generate WAVES Flattener

I ho poi-jfir- rilc-ricim«! liiii:n..... ?x\y-i

irsmm s

The VMDI f i loiiciiiic

Prows?

Run i hfi l i'uriälcii ion i ;: i i

Output M!>SSO(|CS (lOiirralcc!

fii
I rror r:ossfJ(jRS (;«iv:rai t-tf \

FIGURE 3.9. GENERATE WAVES FLATTENER INPUT SCREEN

3.2.1.3 Generate Partial Lookup Table

The initial tool described, Generate WAVES Testbench, requires a lookup
table as one of its inputs. The lookup table is a list of the generic component signal
names and pin numbers of the actual physical components. The pin direction,
either input, output or bi-directional, is also included in the lookup table. This
information is needed to produce a netlist used by the ATE for eventual diagnostic
purposes. The netlist is an output of the 'Generate WAVES Testbench' tool. The

21

Generate Partial Lookup Table tool will create most of the lookup table
automatically from the information contained in the VHDL model. Everything
except pin numbers are created (see Section 1.1.1 in Appendix B). The only input
required to execute this tool is the VHDL structural filename and the name of the
output file where the partial lookup table will reside. The initial input screen is
presented in Figure 3.10. Note that the user will need to edit the partial lookup table
prior to using it in the "Generate WAVES Testbench" tool.

(=;:■!« ■■■!.■■.." .JOi'i'f: :c;(,;;.:p -..i,:.:

Ü!.: .ie'- !(;!■>'. .: ,i«.!i:'i ■■'.:' i: .. .)

:i...;i

JTipoiL,, ;;:;;c-iL,J

His v:-!)l. r! : :-r.oi.i-

Rui: ; ho ■ ?-(.iiÄ ■ f?: :0.-. ;■": :.

f'i ;.pi.:. ■»(<.]■ :■ ■„;-.:>•■■■-- '.-;..■

' ; i ". .;.'. ,-£.(;:::: i -,v ,c . ..■:

FIGURE 3.10: GENERATE PARTIAL LOOKUP TABLE INPUT SCREEN

22

3.2.2 Vector Translation Tools

By selecting the Vector Translation Tools option from the main menu screen
the following options are presented:

• Generate Vector Database
• GR2751 Translator (TGO)
® Generate TDL

Generate Vector Database takes the output of the VHDL simulation (using the
WAVES testbench created with the 'Generate WAVES Testbench tool), and creates
files that are needed by the GenRad 2751 Genisys™ tool for TPS development. This
tool also creates a TRF file for translation into a TDL file, and an input file used by
the 'GR2751 Translator (TGO)' tool. Refer to section 2.4 of this guide for additional
information on all vector translation tools.

The GR2751 Translator (TGO) tool creates a vector file in the GenRad 2751 ATE
format known as TGO. The file is used for functional testing. Finally, the Generate
TDL tool takes the TRF file and produces a TDL and PINS file needed by the IN-
STEP program for creating tester specific test files.

3.2.2.1 Generate Vector Database

The input screen for this tool is provided in Figure 3.11. Note that this screen
looks exactly like all other tool screens. The first input required is the name of the
output file created by the VHDL/WAVES testbench simulation. If the Browse
function is selected, a filename with the '.tb' extension is searched for. This is
reflected in Figure 3.12. Upon selection of the <filename>.tb file, the ID Workbench
will automatically select the signal filename, <filename>.sigs, and place it on the
signal filename line shown in Figure 3.11. This assumes that the .sigs filename is
the same as that used for .tb. If this is not the case, the user must find the correct
<filename>.sigs file using the Browse function, or type it in manually. Note that if
the user types the name in manually for any input file, the complete directory string
must be entered. For example,
/export/home2/elefante/TOOLS_GUI/INPUTS/vidal.sigs.

23

Generate Vector Database

I fiH output of [.;■(> icsiuv>.ic-:i si:.ii.ii(i;.io;:

!h(- signa i f Mei'ifjrii;1

'.iif.hii,.. ~.v;\\

Run thß li'fjfisifl ion ! :; i I

W?^M^M%&.

Oi'S.pui :iR.s>.ti(i?s G;:!ic.-f'i.f:c'

lit

i ri-or ,.ie^:,c:(.u:.s Cicncaiüfi

FIGURE 3.11. GENERATE VECTOR DATABASE INPUT SCREEN

24

cer

JxportfhomeZ/elefanteiTOOLS_GUI/INPUTSr.tb

>me2/e
)me2~

fante/TOQLS_GUI/!NPUTSL
eiTOOLS GUI/iN PUTS/WAR REN

iäisänsii^^ä^^äää^^^^^

/export/home2/eIefanteiTOOLS_GUS/SNPUTS/

Gear Fife

FIGURE 3.12. SELECTING THE OUTPUT OF THE TESTBENCH SIMULATION
FILENAME

3.2.2.2 GR2751 Translator (TGO)

This tool is described in Section 2.4, and in Appendix B. The initial input
screen is provided in Figure 3.13. The Nodes filename is the output of the Generate
Vector Database tool described in the Section 3.2.2.1, and will be in the format
<filename.nodes>. After selecting the file, select 'Run the translation' to execute the
tool and generate a .TGO file, which will be used by the Genisys™ tools to create a
GenRad 2751 TPS.

25

üA/Ybl i ran:-: <::', cnCi £C

I ha riodul f i I ^nunii:

Bi'OL'.'SC

Run i he Irunsiui i o>i

Import? Export

f ;;i i

Oul.ppi. ;;sssci(jcs Qcnvctiled

F .Vtir MCSACIUOS (iCMlt'TCI [.€".'/

FIGURE 3.13. INITIAL INPUT SCREEN FOR GR2751 TRANSLATOR (TGO) TOOL

3.2.2.3 Generate TDL

This tool is described in section 2.3. The input is the <filename>.trf created by
the Generate Vector Database tool described in Section 3.2.2.1. The initial input
screen is provided in Figure 3.14. As before, once the correct input file is selected,
click on 'Run the translation' to execute the tool and create a TDL description file for
the UUT.

26

(iCiic!;-Ml? l!)l

[he l«.-,i [<!■<;■; icinofiIs filename lni|iori (/.|i.ir i

I Browser '

Run liic i runs leii.ion
SH^H^SHSii
■■■SHSIIiVHBI

OuLuul i-fcs.->ugf>s Cciio.o- t d

^ffi^^^^^^^^^^^^S^=S^^S

wmmmmammmmmismmi wmmmm a mm%m ifiiii mmm-mmEm. m &MM s«m mmm 1
in

11
i«j"~- ■ —»- - • - -,—-—....- *. -««,... ,-^..— . , ..„.-.,

^^B^^^^^^^^^» IC111

f rror Mcssugrs ficn.-'rOi r-d

I^HBI^BfllHl

■ii

^^^HHS^lHÖi
BBIIIilii^^ ■^^^^^■B^IIII

FIGURE 3.14: INITIAL INPUT SCREEN FOR GENERATE TDL TOOL

27

4.0 AN EXAMPLE

The purpose of this section will be to step through an example that will
exercise each of the primary tools. The example to be used is of a sample circuit that
was developed to test the tools in the ID Workbench during the TISSS
Enhancement, Awareness and Management (TEAM) program. The VHDL filename
is 'vidal.vhd'. The circuit schematic, along with the VDHL file description is
provided in the Appendix C. Other input files, as well as files created by the
individual tools, are presented within this section. To obtain a copy of the 'vidal'
circuit files that are described herein, contact Mr. Willis Horth or Mr. James Nagy of
RL/ERDD via telecon at (315) 330-2241 or DSN 587-2241. Either individual can also
be reached via email. The current addresses are:

Willis Horth: horthw@rl.af.mil
James Nagy: nagyj@rl.af.mil

4.1 Generating a Board-Level TPS For The GenRad 2751

The steps involved in using the ID Workbench to aid in TPS development
are outlined below. In general, to execute the Test Automation Toolset, an
assumption is made here that a VHDL model and all other input files (e.g., .CON,
.POW, .TBL) in the format described in Appendix B and reference [3] exists. It is also
assumed that a WAVES dataset describing the input stimulus, as a minimum, exists
in the format described in references [3] and [4] and that the user has a VHDL
simulator compatible with IEEE Std 1076.

° Step 1 (optional): Create a partial lookup table by executing the 'Create
Partial Lookup Table' tool

& Step la (optional): Create .TBL file from partial lookup table file
° Step 2: Execute the 'Generate WAVES Testbench' Tool
° Step 3: Simulate the resulting WAVES Testbench using the appropriate

WAVES Dataset.
® Step 4: Execute the 'Generate Vector Database' Tool
° Step 5: Execute the 'GR2751 Translator' Tool
® Step 6: Execute the 'Generate TDL' Tool
e Step 7: Execute the IN-STEP tool using output of step 6 and GenRad 2751

specific template files (refer to Figure 1.1).

In addition to contacting the above listed individuals for a copy of the ID
Workbench tool, the same individuals should be contacted for a copy of the IN-
STEP tool (including the IN-STEP users guide) and the GR2751 specific template
files.

28

4.1.1 Step 1 (optional): Create a partial lookup table by executing the 'Create

Partial Lookup Table' tool

Assuming that the user has started the ID Workbench and is at the main
menu screen (see Figure 3.0), use the mouse to choose Test Automation Tools and
highlight the Generate Partial Lookup Table option. The Generate Partial Lookup
Table screen requires two entries, the new table name, and the VHDL filename.
Using the Browse button, find the directory where the VHDL file "vidal.vhd"
resides, and choose the file "vidal.tbl" for the new table name. Once selected, choose
OK, and return to the option screen. Next, edit the filename chosen by clicking on
the new table name line and then use the keyboard to delete the old name and enter
the name "new_lookup_table.tbl". Refer to Figure 4.1 to see what this should look
like. Note that the directory structure may not be the same as on your own system.
Next, use the browse button again to choose the VHDL filename vidal.vhd. Once
again, choose OK to return to the main screen. Once this step is complete, click on
the "Run the translation" button. The output shown in the Output Messages
Generated box shown in Figure 4.1 should appear. If any error messages appear in
the Error Messages Generated box, determine what the problem is from the error
messages, make any required changes, and repeat the process. Should any problems
still exist, contact Mr. James Nagy at the phone number provided earlier in this
section.

Given that the partial lookup table was successfully created, a small window will
appear with the output files generated, as shown in Figure 4.2. If desired, this file
can then be viewed and /or edited using the systems text editor. Since this is a
partial lookup table, the file will have to be edited before it can be used in the next
step. Therefore, double click on the filename shown in Figure 4.2. Figure 4.3 shows
what the beginning of this file looks like. From within the text editor, the pin
numbers for each of the devices listed in new_lookup_table.tbl can be filled in. The
completed lookup table is shown in Appendix B, under the Lookup Table (.tbl)
subsection to Section 1.1.1 INPUTS. It is not necessary to modify this file, however,
as the file "vidal.tbl" contains the information shown in Appendix B. Completion
of the table is left to the user as an exercise. After exiting the text editor, click on the
word "EXIT" shown in Figure 4.2 to return to the main tool screen.

4.1.2 Step 2: Execute the 'Generate WAVES Testbench' Tool

The next step is to generate a WAVES testbench by executing the Generate
WAVES Testbench option. Return to the main menu screen and once again choose
the Test Automation Tools option and then highlight the Generate WAVES
Testbench option. The option screen shown in Figure 3.1 will appear. Use the
browse buttons to choose the necessary files and then "Run the translation".
Figure 4.4 shows how the screen should look with the correct filenames and Output
Messages Generated box. Note that each of the required filenames have different
extensions but the same name, "vidal". As before, if error messages are generated,
determine the cause, make corrections, and re-run this option.

29

Generate pcritel lookup table

ihr iici: :!.■::!.' I'-O.M ::...■': . ■ .-: ;

RSfÖÜßlS' Vhome/vortex/elefante/WORKBENCH/Date_Files/new_lookup_table.tbl

illiiillllllllllilH

-a < /home/vortex/elefante/WORKBENCH/Date_Files/vidal .vhd

iUir. '..;-.> -. .■'.'.-. -:•■.:•

?■■■■. , • . .::■ -..■..; - '.:.:■

Ü?itd\ii(i Ui.J |.c -.•-■ .iq "/'■(>:.!.■/"■■-■ ::;/■■■:.■. ' /■-:■;■".■ ■":/..- . :• .•■•'■:■ ■■-■-"

' ■.-■.■■ . :■•.-■ .-.■ •'" ..■

FIGURE 4.1: PARTIAL LOOKUP TABLE SCREE!

A successful run will once again result in the small window showing the output
files generated. For the example, Figure 4.5 shows what this will look like. Once
again, double click on any of the filenames listed to view or edit a file. After exiting
the text editor, click on the word "EXIT" shown in Figure 4.5 to return to the main
tool screen.

30

J^.
:
:
:
: ££v?ttä"::: ^v?x::' Lv?:*-' ü-^^:

I

I

£^isö££;i

FIGURE 4.2: OUTPUT FILE SELECTION SCREEN

4.1.3 Step 3: Simulate the resulting WAVES Testbench using the appropriate
WAVES Dataset.

The next step would be to simulate the resulting testbench created in step 2,
using an appropriate WAVES dataset and external vector file. This step has already
been completed for this example and the output files are part of the example files
provided. Specifically, the file "vidal.tb" is the resulting output of the VHDL
simulation.

4.1.4 Step 4: Execute the 'Generate Vector Database' Tool

The next step in this process is to create the GenRad diagnostic probe database
"vidal.cap", and a performance vector file in a format that can be translated into the
GenRad ".TGO" format required by the Genisys™ tools. The ".cap" file is directly
useable by the Genisys™ Tools in creating a GR2751 TPS.

This step is accomplished by running the Generate Vector Database option from
within the Vector Translation Tools option found in the main menu screen of the
ID Workbench. Therefore, return to the main menu, and select Vector Translation
Tools. Next, highlight the Generate Vector Database option. The screen shown in
Figure 3.11 will appear. Use the browse buttons to choose the input files vidal.tb
and vidal.sigs. Next, select the Run the translation button. Figure 4.6 shows the
resulting screen. The output files that should also appear in the smaller window
(see Figure 4.5) are vidal.cap and vidal.nodes.

31

iM; Ltii-'jj' /3,-; jibrj CO .1 '■ 'i i. .I-, [i':/hJ

U • 1,

Filename : /home/cortex/elefante/WORKBENCH/Date_Files/new_lookup_table.tbl
Created : 28-Aug-1995 16:32:08

Copyright August 1994

Created by: T2-1 Version 1.36

IIT Research Institute -
201 Mill Street
Rome, NY 13440
(315) 339-7119
runkle@mail.iitri.com
wswavely@mail.iitri.com
jbeaton@mail.iitri.com

•- The lookup table has the following format...

•- <Component Name>
•- <formal pin name> <pin number> <mode>

T2-1 designates a "#" to represent the undefined pin number
that the engineer must determine and enter.

T2-1 designates a "?" to represent any undefined mode (direction)
that could not be specifically determined from the model.

T2-1 designates «***TYPE***" to represent the component type
that the engineer must determine and enter.
Legal modes are: I or i for input

0 or o for output
B or b for bi-directional
1 for on/power
0 for off/ground

for nothing other than a place holder
(this usually accompanies a no-connect pin
which is also designated by a '-')

TTL00 ***TYPE*** --COMPONENT & TYPE
Al #
A2 #
A3 #
A4 #
Bl #
B2 #
B3 #

FIGURE 4.3: TEXT EDITOR SCREEN

32

!.;■■■■•■ i-f-i. . ''.:»! \ : - ■: • IV.:. -.:

Browse. /home/vortex/elefante/WORKBENCH/Date_Files/vidal.con

Browse /home/vortex/elefante/WORKBENCH/Date_Files/vidal.tbl

I lie IJOIVJ'I- f i ! «'noiiio

fr.?.™Sf • /home/vortex/elefante/WORKBENCH/Date_Files/vidal.pow

I hi- «110: I ! IsMf.'hl.'

I i
In. port Cspoi-l

Browse ; I /home/vortex/elefante/WORKBENCH/Date_Files/vidal.vhd

Uii.i l !-■>■" i ranslni i on

-_ .—i.—■. j_/ . . : j..-. -_ .* ..* J

i A i;

Cm i pii i ;-';c<,.sc;(;c5, <-.f .-.c r c; ci=

; Reading parsing and building a lookup table from /home/vortex/elefante/WORKBENCH/Oate_
'-Creating the net: list file: Writing to Vhonie/vortex/elefante/WORKBENCH/DateJ-iles/vidal.cct''

Reading and parsing the VHDL. model in "/home/vortex/elefante/WORKBENCH/Date.Files/vidal.vhd
Reading and parsing the connector file in "/home/vortex/elefante/WORKBENCH/Date.Files/vidql^co
Reading and parsing the power file in a/home/vortex/elefante/WORKBENCH/Date_Files/vidal,pow"
♦Creating Sinais füe:Writing to ,7home/vortex/elefante/'W0RKBENCH/Date_Files/vidal.sigs"
♦Creating assembly data set. file:Writing to K/hoine/vortex/elefante/WORKBENCH/Date...Files/vidal.

I ri-or ;.rssw'jv-f. {i-n.'i1!.1; ;vi i

—

isiBiit

liiillii

pi

11
fe$

liiillii
FIGURE 4.4: WAVES TESTBENCH GENERATOR SCREEN

33

LSCü.sLV v'~. :Gi:,:L3,.';K .:;] -.i.;

-iü* . _. MiM. w^
a=i mB\i\\\ism :::£: miHHiSa mm iB

liS
11 jsssig: W~m mm ^::::::::sfcSEj;:g: mm

FIGURE 4.5 WAVES TESTBENCH OUTPUT FILES

4.1.5 Step 5: Execute the 'GR2751 Translator' Tool

As explained in Step 4 above, the performance vector file must be translated
into the TGO format before running the Genisys™ tools. This is accomplished by
executing the GR2751 Translator (TGO) option, also found in the Vector Translation
tools option in the main ID Workbench menu screen. Once this option is selected,
the screen shown in Figure 3.13 will appear. Once again, use the browse button to
choose the filename required; in this case, vidal.nodes. Once the file is selected, Run
the translation. Figure 4.7 shows what the screen should look like, while Figure 4.8
shows the output files generated. Note that in addition to the .tgo file, a file called
vidal.ctx is also generated. The .ctx file is an additional file required by the Genisys™
tools for development of a probing database.

4.1.6 Step 6: Execute the 'Generate TDL' Tool

In addition to the vector information needed to test a UUT on an ATE, other
files are required for controlling the ATE, as well as for performing other tests, such
as power, current and parametric testing. The TDL files, generated automatically by
the Generate TDL tool are designed to capture such test requirements for the board
level. The TDL files are then used as input to the IN-STEP tool, along with tester
specific template files, to generate the remaining information needed to develop a
TPS. To generate the TDL files, choose the Generate TDL option from within the
Vector Translation Tools option of the main menu screen. The screen shown in
Figure 3.14 will appear.

34

Ci'iK'i'fi ■■ »';■(. :oc IK i:.h . - ■

H'C 0!i!;)l.':. Ol' I IK' if'SLlKMUn siiilLHiJi :o,i jnp.n-l I <;...,■!

Browse /home/vortex/elefante/WORKBENCH/Date_Files/vidal.tb

H co ■.-;.-:€' /home/vortex/elefante/WORKBENCH/Date_FiIes/vidal.sigs

Run the translation ;

011 i. I > i_- i. .i«:';<iC(.j(-.s (it>rs'<i'ui(.o

! X i i

iisss looi ii< io i-'oiii s Vf.-sioii i.-i ON o, ;s 'iji \vy-,
I ;;orui i,!,;> 10 rO HOI)i S on /imi„c/vor n:;./r K'i'tii.uf/.'ORKli. i«l!/:lo: :■ : = las/vi dwi
'■ h!f»!:\s osiiput ,'ilo is "/:io,np/v()i'i('«/(*lcfc',-i:.'/'"'0:<:::jl i:C';:/l"nä.:' : < i <»--./v i df L . .lud
* Capiui-p ciul .»i.-i .Hi* ■; -. "/i-iOi-iic/voi-lr.^/fir ;ii.i;;'/,.,ORKHii-,(:i/;)t',o .1 Msis/wififl .c I
KoacfiiKj -si HS für-
piunibcf <;=" VIM)! :,i IJIHJI s I.'!
Wuriibi'i- of IfiO -.ifjiifjls ,'

mm
l I-. or ;-ii",;»U[io« CiOnorfJloo

i^^J»?

ti

FIGURE 4.6: GENERATE VECTOR DATABASE SCREEN

Use the browse button to select the Test Requirements filename (TRF) vidal.trf,
which was provided with the example files. If a TRF file had not existed previously,
one would have been created when the Generate Vector Database option was
executed. Since this file already existed, the file was not created. Once the vidal.trf
file is selected, run the translation. The screen in Figure 4.9 shows the resulting
screen. The resulting output file is vidal.tdl.

35

4.1.7 Step 7: Execute the IN-STEP tool using output of step 6 and GenRad 2751
specific template files (refer to Figure 1.1).

The last step to creating the files needed for a GR2751 TPS is to execute the IN-
STEP tool using the GR2751 specific template files and the TDL file created in Step 6.
Because the IN-STEP is not yet part of the ID Workbench, it is not described here. As
noted, a copy of the IN-STEP tool, user guide, and ATE specific template files can be
obtained from RL. For further information on IN-STEP, see reference [5].

Browse^' /home/vortex/elefante/TORKBENCH/Date_Files/vidal- nodes

:<!-,: : !i:- . : v :j.: (; ::.: :•' .

•:J| : ;ji L ,.: •:■<(--. .V'.' .': .('

T1SSS Tool HODE$_TG_T€Q ¥ersiom i.i üS of 28-301-1935 ;
Executing MOESJTCLTGO on /homö/vopte;t/el«fönte/rJOR!(BEMCH/Dste_Files/vidöl. j

Co-s " .

Pass It \\
*CTX output file is "/hoittö/vortex/elefanteAlORKBEfiCH/Oete^Files/vidöl.ci-s*5 j;

■ : ;v ,!.•.:•-.-.• :: . ; ..' : : -

FIGURE 4Ji GR2751 TRANSLATOR SCREEI

36

So "l or L :o cüsfji «y o,\ oui-iii-; >li*\

vicäf-'i . et;;
»i (J(jl . Lcjo

:• - ■: \ ys [\ " c v : ,- . , ■ .. . J : »'— I?-»': '•■"" •"' i

i
i

FIGURE 4.8: VECTOR TRANSLATION OUTPUT FILES

37

GC:i-:crö':;s TSL

\Ui' r.-,. !";.'.'-; :■■„. ;•■'. ■
1 lit p o r L i x. p o ,• t

Browse. /home/vortex/elefante/raORKBENCH/Date_.Files/vidal . trf

Uu ' ■..;» ; ■" .- ■ (■ "f. E:ü'l

O1-' ■;■. .- •■■:.; '.■ ■ ' :..: . • : ■

11)1 üi'L:>L-i .'.'r '/; i-v.v/- 0: = • :•/ :■ : ,, ./;,.:;■ ■'..-. . . '■.
S t a r t o f ,nu s t c r . . r ■'■. w; Ir;
Bolncj 1 .:!;':■ SM-ir CO1:'.' . iV! -.

Doing -cvo ■»i.1::-: »

■ . :i;-- ■-.-.:i;,: ■ ■■.':.::

FIGURE 4.9: GENERATE TDL SCREEI

38

REFERENCES

[1] Debany, Warren H., et. al, "CONVERTING TEST REQUIREMENTS INTO TEST
PROGRAM SETS/' Proceedings, AUTOTESTCON '93

[2] Nagy, James Mv and Newbert, Jeffery, "Capturing Board-Level Test Requirements
in Generic Formats/' proceedings, AUTOTESTCON '94

[3] Debany, Warren Hv et. al., "An Update to Applications of Open Standards to Test
Automation for Board Level Testing," proceedings, AUTOTESTCON '94

[4] Beaton, Joseph, et. al., "A Generic VHDL Testbench to Aid in Development of
Board-Level Test Programs," proceedings, AUTOTESTCON '94

[5] Hanna, James P., and Horth, Willis J., "A NEW METHODOLOGY FOR TEST
PROGRAM SET GENERATION AND RE-HOSTING," proceedings,
AUTOTESTCON '91

[6] Tapscott, M, "GEM, Aftermarket Provide Affordable Solutions as Old Ics Get
Scarce," Defense Electronics, October 1993

[7] Appendix A, ADSF Specification, GenRad Inc.

39

APPENDIX A
TESTER INDEPENDENT SUPPORT SOFTWARE SYSTEM (TISSS)

BACKGROUND

1. INTRODUCTION

1.1 Purpose

The purpose of Appendixes A-C is to present additional information on the

Tester Independent Support Software System (TISSS) Toolset (T^). Specifically,
Appendix A provides background information on the TISSS program, while
Appendixes B and C provide more detail on the following ID Workbench Tools or
Options:

WAVES Testbench Writer
Generate Partial Lookup Table
Generate Vector Database
GR2751 Translator (TGO)

The T2 is currently designed to automate the process of developing test files that can
be used to generate Test Program Set (TPS) software required to test a digital circuit
board on either the GenRad 2751 or MATE-390 tester. These appendixes will provide
background on the TISSS program, both past, current and future, as well as

information on the specific T^ input file requirements and output file formats.

The T2 is based on developing TPS software via simulation in the Very High Speed
Integrated Circuit (VHSIC) Hardware Description Language (VHDL). However,

parts of the T^ could be used to re-host current TPS software, provided all files are in
the proper formats as described herein.

1.2 TISSS

1.2.1 Past

Before describing the specifics of the TISSS toolset, it is appropriate to provide
some background information on TISSS. TISSS was originally developed in the mid-
1980's time frame as a means to electronically capture test requirements information for
microcircuits embodied in MIL-M-38510, "General Specification for Microcircuits " slash
sheets and/or manufacturer's data sheets. The information was captured in a data
format defined as Test Description Language (TDL). In addition to information such as
voltage and current levels, other component characteristic information such as test

A4

propagation delay times, test temperature levels (needed for qualification testing), and
test philosophy information (based on technology type (e.g., CMOS)) is also part of the
TISSS database structure. The original intent of TISSS was to enable the exchange of
this information among semiconductor manufacturers, defense system manufacturers
(sometimes referred to as Original Equipment Manufacturers (OEMs)), government
qualifying activities, and government logistics agencies. An example of this exchange
system is provided in Figure Al.

Semiconductor Manufacturer
• Standard integrated circuit

- Draft model product preparation

• Test Program generation
- Characterization test
- Qualification test
- Production test TISSS

Defense System Manufacturer
• System product models
• Module product models
o ASIC draft product models preparation

- Draft product models preparation
• Incoming inspection

• Test program generation

TISSS

Government Qualifying Activity
• Draft product models approval
• Product models maintenance

• Product models distribution

Government Logistics Agency
o Test program generation
• Logistics support

The TISSS Input format is the format for design and test data interchange among TISSS
sites. A subset of the input format (i.e., the output format) is used to protect proprietary
information.

FIGURE Al: EXAMPLE OF A TISSS ENVIRONMENT

The major advantage to TISSS is the concept of capturing test requirement information
in a format that is non-proprietary and independent of any Computer-Aided Design
(CAD) system or Automatic Test System (ATE). The advantage of this is illustrated in
Figure Al. In this example "TISSS system", a semiconductor manufacturer may use the
system to capture design and test information and to generate a draft product model.
The data may then be submitted to the government qualifying activity for product
model and data approval. A defense system manufacturer or integrator may use the
system to qualify complex application-specific devices or to query the system (at the
government qualifying activity) for design, test, and product model information system.
The government logistics agencies may use the TISSS to generate test programs for the
product model. The capability to perform each of the described tasks lies in the fact that
the TISSS data is in a standardized format that is recognizable by those who wish to

A-2

access the data. If one knows the format of this data, they have the means to translate
the information to make it compatible with other processes, such as development of a
test program. Herein lies the power in the TISSS concept of non-proprietary data
capture.

In addition to test requirements information captured in TDL, a means to capture test
vector information in a standardized format and a post-processor program was also
developed under the original TISSS effort. The test vector format was eventually
replaced by the Waveform And Vector Exchange Specification (WAVES) format for
describing simulation and test vectors. WAVES is IEEE standard 1029.1, and is a subset
language of VHDL (IEEE standard 1076). The post-processor, named the INdustry
Shared TEst Processor (IN-STEP), is designed to read TDL files, device pin information
files, test philosophy files and test vector information and, using a series of ATE specific
template files, create a test program that can be compiled and run on the target ATE. A
flow diagram showing an example of how IN-STEP can be used is shown in Figure A2.

1.2.2 Present

Since the original TISSS program was completed in 1986, TISSS, and its meaning,
has gone through several changes. One change was that the microcircuit database
portion of TISSS was not something that generated a great deal of interest. The primary
reason was that MIL-M-38510 was eliminated as a government standard and replaced
by the Quality Manufactures List (QML) procedures and standards. Therefore, the
need to have such information in this format, essentially went away. Another change in
TISSS was that ANY standard for electronics (e.g., design, test, etc.), that captures
design and test information in non-proprietary formats was adopted by those who
developed TISSS at RL under the "TISSS umbrella". This included the standard on
VHDL. Also, since the completion of IN-STEP, the process of going from TDL and
WAVES out to a tester and actually testing a device had been demonstrated for a
number of microcircuits. Much of the demonstration was done in-house at RL, and
includes the following devices:

• an LRM from the F-22 Advanced Tactical Fighter program
• the "Pathfinder" chip (a 181-lead package with 141 I/O pins)
• a RICMOSrV "Evaluation Metal" chip (a 256-lead package with 210 I/O pins)

delivered under RL's Radiation-Hardened 32-Bit (RH32) Processor Program
• a 54LS161 synchronous 4-bit counter that was part of RL's Field Failure Return

Program.

All devices were tested on a Teradyne J953 components tester resident at RL.

Figure A3 shows the process by which test programs were created for the listed devices.
In each case, test vectors were either developed from device specifications or, in the case
of the RH32 devices, delivered by a contractor. Other information, such as device
voltage and current levels and test propagation delay times were captured in a simple

A-3

format developed at RL and known as a Test Requirements File (TRF). The vector
information is first translated into the WAVES formats, and then translated to the J953
tester format using a translation tool developed under the original TISSS program. The
TRF is translated into a TDL and pins file, and then this information, along with other
files that describe connector pins and test philosophy, are translated into a J953 test
program using the IN-STEP tool. Reference [1], presented at AUTOTESTCON '93,
describes this process and should be referred to for further information.

TDL

Test Philosophy

- test class

- test case

-test priority

Pin Definitions

- pin name, term
position

- pin groupings

Test descriptions
and device
specifications and
limitations

Tester
configuration or
device interface
board file

Timing information
from WAVES
translator

IN-STEP

TDL PARSER

Creates a list

containing 15

sublists:

4 REQ, 3 PIN

6 TDL

Test Data Parser

- Creates individual

list from free-

formatted file

Expression parser

- Creates individual

list from file in list

format

OUTPUT

DIRECTORY

pinmap.h

chann_map.h

pinjists.h

.TEST TEMPLATES

pindef.term

FIGURE A2: EXAMPLE IN-STEP EXECUTION

A4

ATE Templates

Data Interface Board File

Tester Capabilities

Test Philosophy

Device Test

Specifications Test Requirements

I
TDL Files

Test Requirements

File

Test Vectors

(existing of via

simulation)

TRF-TO-TDL

AND WAVES

TRANSLATOR

I

IN-STEP

TPS software that

is compilable on

target test system

(pin groups &

timing data)

WAVES Translator

(vectors)

(Tester Specific)

FIGURE A3: EXAMPLE TEST AUTOMATION PROCESS USING TISSS

1.2.3 Future

In October 1992, the Advanced Diagnostics and Technology Insertion Center
(ADTIC) of San Antonio Air Logistics Center (SA-ALC) decided to evaluate the
usefulness of the TISSS tools, VHDL and WAVES in developing TPSs for board-level
systems. As part of this project, the ADTIC enlisted the aid of RL to provide
information and expertise in the TISSS tools and in understanding WAVES. RL
subsequently hired the Reliability Analysis Center (RAC), a DOD Information Analysis
Center, to provide support in WAVES and in enhancement of the IN-STEP tool. Since

A-5

October 1992, both RL and the RAC assumed a greater role in developing a means to
implement the TISSS tools in a board-level test development environment. In
conjunction with Science Applications International Corporation (SAIC), who was hired
by ADTIC to perform much of the TISSS tool evaluation, TISSS has been expanded to
handle board level test. In particular, a test automation path has been developed to go
from a board-level design captured in VHDL to test program files that are compatible
with a GenRad 2751 tester, and a MATE 390 Atlas tester. The future of TISSS is to
improve upon the prototype tools developed for the aforementioned test environments,
and to expand the TISSS environment to handle more testers and to improve the TPS
development process. The process described by Figure A3 and in reference [1] is
currently being used to test an AM2901 chip designed under the Generalized Emulation
Microcircuit (GEM) program. More information on GEM can be found in reference [6].

A-6

APPENDIX B

THE TISSS TOOLSET (T2)

1. THE TISSS TOOLSET (T2)

Figure Bl presents the current input file requirements and output files produced
by the current set of TISSS tools. The following paragraphs will describe all input files
and their required formats, the general purpose of each TISSS tool, and the output files

produced by the primary T^ components. Figure Bl presents the process developed to
generate GenRad 2751 (GR-2751) compatible test program files. Once created, these
files are then used by the GenRad Genisys™ tool to create a test program that can be
executed on the GR-2751. Refer to Figure Bl for the information presented in this

section. Figure Bl shows five (5) T^ components that are listed below:

• WAVES Testbench Writer
• Vector Translation Tools
• TRF-TO-TDL Translation
• IN-STEP
• WAVES Vector File Translator

1.1. WAVES Testbench Writer

1.1.1 Inputs
The purpose of this T2 component is to read in four files as shown in Figure Bl: a

VHDL file of the board to be tested, a connector (.con) file, a power (.pow) file, and a
component look-up table (.tbl) file. The resulting output is a GenRad .ADS file [7], a
GenRad .CCT file for each component in the VHDL board model, a VHDL simulation
test bench that will be used to simulate the board model, a signals file naming each
external signal and its direction (i.e., input, output, bi-directional or power), and a pins
file describing each connector pin and its corresponding connector pin number and
board signal name. An additional input to the WAVES Testbench Writer is a look-up
table containing information on the individual Integrated Circuits (ICs) used on the
board to be tested. Part of the look-up table can be created by executing the "Generate
Parital Lookup Table" option from within the ID Workbench. All information required
in the lookup table, except individual component pin numbers, can automatically be
produced from the incoming VHDL structural model. The format for each of these
inputs is discussed in the subsections that follow.

B-l

0 CON

VHDL
w/o
TB

WAVES
testbench
writer

component
lookup i ah lo WAVES

Data Set
w/external
vector file

ru;-in-':'ä):
IrdnsUi'uir

TDL
Files

Pins File

v-.-vi:-;:- TSR
Files

GENRAD
Specific
Template
Files

FIGURE Bl: T2 I/O REQUIREMENTS FOR THE GENRAD 2751

.CON FILE

The information contained in the .CON file is a list of the type of connector (s)
used on the board to be tested (herein after referred to as the Unit Under Test (UUT)),
and the connector pin names. This information is used along with the information
contained in the VHDL structural model and the .POW file to create a GenRad
Assembly Data Set (.ADS) file. As described in the .ADS File specification, " The
Assembly Data Set File provides a text file interface to the test system assembly
database. The file supports descriptions of printed wire boards, discrete components,

B-2

and integrated circuits. Assembly data includes information about the assembly, parts,
connections, packaging, power, and functional groups."

The .CON file is a simple text file that contains a header line followed by a list of
the connector pin numbers and corresponding pin names. The header line lists the
name of the connector (e.g., PIA), followed by the type of connector (e.g., edge_conn)
and the total number of pins on the connector. An example of the header line is
provided below.

PIA Edge_Connnector 140

Note: The header line must be the first non-comment line in the .CON file.
Comments are allowed in the .CON file. Comments are identified by the
double dash marks (i.e., --) preceding the comment.

The above header line describes a connector, denoted as PIA, that is an edge connector
having 140 pins.

Note that a space must separate the connector name, connector description, and
number of pins. Also, no spaces may exist in the connector type description,
and the description is limited to 80 characters.

Following the header would be a list of those pin numbers that are actually being used
on the UUT and the signal name associated with each pin. The signal names must be
the same ones used in the VHDL model. As an example:

1 CONTROL_A
2 DATAJN
10 DATA_OUT
100 BIT SIGNAL

The only restrictions on listing the pin number and corresponding UUT signal
names are that a space must exist between pin number and signal name, the
signal name cannot have any spaces and is limited to 80 characters, and only
one pin number/signal name per line.

An example of a complete connector file for the example circuit shown in Appendix C,
Figure Cl is presented below.

- VIDAL.CON
-- William G. Swavely
- 1:56PM 3/10/94

B-3

PIA mux connl 9
1 Pl 1
2 Pl 2
3 Pl 3
4 Pl 4
5 Pl 5
6 Pl 6
7 Pl 7
8 VCC
9 GND

.POW FILE

The information contained in the .POW file is a list of all voltage supply signals
used on the UUT, along with the nominal value, maximum current value, the ground
signal name that each supply signal is with respect to (WRT), and the start up and shut
down delay times associated with each supply signal. A sample .POW file is shown
below.

- NAME VOLTAGE MAX. CURRENT WRT DELAY

VCCI 5.0V 10A GND IS
VCC2 5.0V 10A GND 2S

The actual .POW file does not have to contain the field headers as shown above. The
headers are shown here to explain the requirements of each field and the order in which
information is listed in a record. Note that the field header names have a comment
symbol"-". This is allowable for those who wish to include the header names in this
file. Table Bl below describes each field in the .POW file.

Note that only voltage supply signals need be listed in the .POW file.

VHDL STRUCTURAL FILE

The VHDL structural file is the file that describes the UUT in VHDL. Figure Cl
and Cl.l, (see Appendix C) will be used to illustrate the format requirements for any

VHDL model to be translated by the WAVES Testbench Writer. Figure Cl is a
schematic of a simple circuit, and Figure Cl.l is the VHDL description of the circuit.

B-4

Table Bl: .POW FILE FIELD DESCRIPTIONS AND RULES

Field Name Description Rules
NAME voltage signal name no spaces, maximum of 80

characters
VOLTAGE The nominal voltage value enter nominal value in

Volts, (i.e., V, mV, etc.)
MAX CURRENT maximum allowable

current for the voltage
source

enter value in Amperes

WRT name of ground source
voltage signal is with

respect to (wrt)

signal name with no
spaces, maximum length of

80 characters
DELAY The up delay/down delay

for power up and power
down sequences

enter value in seconds
(must have unit of S as

shown in example). The
value entered will be used

for both power up and
power down

The VHDL description file shown in Figure Cl.l shows comments in bold face that
explain the specific rules that must be adhered to for use of the WAVES Testbench
Writer component of the TISSS tools. The tool also expects all VHDL model code to be
contained in a single file prior to input to the tool. The tool also expects, at most, a
single instance of the following blocks of code:

BLOCK1: entity

end

BLOCK2: architecture

begin

end

BLOCK3: configuration

end

B-5

The position of each block within the model is not restricted to the order shown above,
any legal order is acceptable.

LOOKUP TABLE (.TBL)
In addition to developing a VHDL description of the UUT in the above formats, a

"lookup" table for each of the individual components contained in the VHDL
description file must be defined. The lookup table needs to exist as a single file and
component information needs to be in the format shown below.

Component name (as used in the VHDL model)
pin name pin number pin direction

Note that the component terminal or pin name need not match the signal names
connected to a particular device in the VHDL model. For most cases, if the component
is a standard device, then the terminal names would be those found in a manufacturer's
data sheet for that device. The component look-up table for the components in the
sample circuit would look like what is shown below. The information shown in bold
typeface can be automatically created by the "Generate Partial Lookup Table" tool from
the VHDL model information (refer to Section 3.2.1.3). Also note that power pins (VCC
and GND in the example presented) do not have a direction, rather they must have a 'Y
or a '0' for logic level. Since power pins will typically be declared as an input, they will
be designated with an i in the partial lookup table created by the tool. The user must
manually edit the power and ground signals by replacing the i with either al'ora'O'.

TTLOO
Al I l

Bl 2 i
Yl 3 o
A2 4 i
B2 5 i
Y2 6 o
A3 9 i
B3 10 i
Y3 8 o
A4 12 i
B4 13 i
Y4 11 o
VCC 14 i
GND 7 i

TTL175
PI 1 i
P2 2 o
P3 3 o
P4 4 i

this must be replaced with a '1'
this must be replaced with a '0'

B-6

P5 5 i
P6 6 o
P7 7 o
GND 8 i - - this must be replaced with a '0'
P9 9 i
P10 10 o
Pll 11 o
P12 12 i
P13 13 i
P14 14 o
P15 15 o
VCC 16 i - - this must be replaced with a '!'

NOTE: Device pins that are no connects (NC), MUST be designated by a dash (-)
mark in the lookup table. As an example:

TTL02
1 - (this is the no-connect pin)

P2 2 I

1.1.2 Execution

Executing the WAVES Testbench Writer and Partial Lookup Table tools is
described in Section 3.0 of the report.

1.1.3 Outputs

As depicted in Figure Bl and in the above example, the WAVES Testbench
Writer creates four (4) different files as output. Two of these files (.ADS and .CCT) are
used directly by the GenRad Genisys™ system. The VHDL w/tb file is the VHDL
structural file with a test bench (tb_vidal.VHD for the example circuit). The testbench
file is used to simulate the board model in a VHDL simulator. The signal input/output

(i/o) file is used by T^ component "Vector Translation Tools". The .ADS file was
described earlier, and complete information on this file can be found in the GenRad
ADSF Specification [7]. The .CCT file contains GenRad .CCT "shell" files in the format
shown below, for each component in the board model.

B-7

IC SN54LS138 (,A,B,C,NG2A, ,NG2B,G1,Y[7],GND,,
Y[6],Y[5],Y[4],Y[3],,Y[2],Y[1],Y[0],VCC)

INPUT ABC NG2A NG2B Gl;
OUTPUT Y[0:7] ;
SUPPLY1 VCC;

SUPPLYO GND.

IC terminals that are not used(either opens or no-connects), are listed as a space in the
above formatted signal list. As an example, the cross reference list for the above 20 pin
device is as follows:

TABLE B2: DEVICE PIN CROSS REFERENCE LIST

Pin Number Pin Desienation fas listed in the
look- -up table file)

1 -

2 A
3 B
4 C
5 NG2A
6 -

7 NG2B
8 Gl
9 Y[7]
10 GND
11 -

12 Y[6]
13 Y[5]
14 Y[4]
15 Y[3]
16 -
17 Y[2]
18 Y[l]
19 Y[0]
20 VCC

An IC listing is created for every component used in the board design.

The signals (".sigs") i/o file contains a listing of external and internal board signals
declared in the VHDL file, including signal direction information and a cross reference
table for the external signals that maps the signal name to the connector pin name.

The very first line of the file contains the comment characters '—' immediately followed
by two unsigned long words, number of external signals and the number of internal

B-8

signals. So, the number of external signals can be found at byte 2 (using C indexing
starting at 0) and the number of internal signals can be found at byte 2+sizeof(long).

The first set of signals listed in the signals file are the externals in the following format:

— External Signals...

[signal name] [direction/mode] [connector string]

The signal name is the corresponding signal name from the incoming VHDL structural
file. The direction is one of the following single characters: i, o, b, where i=input,
o=output and b=bidirectional. The mode is for power pins, which are designated with
a "p". The second set of signals listed are the internals in the following format:

— Internal signals

[signal name]

Once again, the signal name is the corresponding internal signal name from the
incoming VHDL structural file. An example of the signals file for the example circuit
and model (see APPENDIX C) is provided below.

—External Signals...

Pl_l i P1A.1
Pl_2 i P1A.2
Pl_3 i P1A.3
Pl_4 i P1A.4
Pl_5 i P1A.5
Pl_6 o P1A.6
Pl_7 i P1A.7
VCC p P1A.8
GND p P1A.9

— Internal signals...

Y1_A3
Y2P12
Y3_P4
Y4_P9
P7JB3
P10_B1_P5
P15 B2

B-9

The final output of the WAVES Testbench Writer tool is a WAVES compatible testbench
that can be used to simulate the VHDL structural model and produce vectors that will
eventually be used to test the actual board on an ATE. An example of the testbench
created for the sample model in Figure Cl.l is shown in Figure C1.2.

Note the comments that are in bold letters in Figure C1.2. The WAVES compatible
testbench created is based on certain rules and naming conventions that must be
followed. The first concerns the naming of packages and functions that are contained in
the WAVES dataset that are associated with the VHDL model. These rules are noted in
bold lettering as comments in the initial use clauses of the test bench. Another rule that
must be adhered to is making sure that the external signal declarations in the VHDL file
are in the identical order as the columns contained in the WAVES external vector file.
This is important as evidenced by the 'Translate' function defined in the test bench (this
function is identified by bold letters in Figure C1.2). The translate function reads the
logic values contained in the WAVES port list, translates the logic value to a std_logic
value, and applies it to a signal in the testbench. It is here where the signal names from
the VHDL model are matched with the vectors contained in the WAVES external file. If
the signals are not in the correct order, the simulation of the test bench may contain
errors. Another rule concerns logic value names. The logic value names defined in the
WAVES dataset MUST be the same names noted in Figure C1.2.

1.2 Vector Translation Tools

This tool is a GenRad specific translation tool designed to read the vector
information produced via simulation of the VHDL testbench created by the WAVES
Testbench Writer. Three files are created by this ID Workbench option in a two step
process:

step 1: execute "Generate Vector Database" tool
step2: execute "GR2751 Translator (TGO)" tool

Step 1 above takes the following files as input: a file called <filename>.tb and a file
called <filename>.sigs, where it is assumed that both the .tb and .sigs have the same
filename (e.g., vidal.tb and vidal.sigs). The .tb file is the output file of the testbench
simulation. The .sigs file is one of the outputs of the Generate WAVES Testbench tool
described above. The output of the Generate Vector Database tool will be the GenRad
.CAP file (see Figure Bl) and another file called <filename>.nodes, where <filename> is
the name of the file (without extension) given to the output of the testbench simulation
and the .sigs file. Figure B2 below provides an explanation of this process.

B-10

VHDL
SIMULATION -m^_ <.''■ ■ : -:..ä.■'.:■-■. ;-,

WAVES
testbench
writer

-^►U

mmmmiem

•■T-' - -

i<l i lonamo.no

<i i >. (: n;-: :;•<.'. :■> '■-..-

FIGURE B2: EXECUTION OF VECTOR TRANSLATION TOOL "Generate Vector
Database"

In the above figure, the <filename> is equivalent to the name of the VHDL structual file.
The name of the output file from simulation is currently <filename>.cap and will
have to be renamed to <filename>.tb prior to running tb_to_nodes. The .nodes file is
the primary input to step 2 above, execute GR2751 Translator. This process creates the
GenRad .TGO and GenRad .CTX files noted in Figure Bl.

1.2.1 Execution

Refer to Section 3.2.2 for information on how to execute the ID Workbench
Vector Translation Tools. Shown below is an example of the output message generated
for the example circuit shown in Appendix C.

B-ll

iitrisun% tb_to_nodes.x vidal
TISSS Tool TB_TO_NODES Version 2.2 as of 03-JUN-1994
Executing TB_TO_NODES on vidal
Nodes output file is vidal.nodes
Capture output file is vidal.cap
Reading .sigs file...
Number of VHDL signals = 18
Number of TGO I/O signals = 7

(not counting new_slice, strobes, and power signals)
Reading .tb file to count slices...
Signals in .cap file will be encoded in base 94 using chars: !"#$%&'()*+,-
./0123

456789:;<=>?@ABCDEFGHlJKLMNOPQRSTUVWXYZ[\]AJabcdefghijkl
mnopqrstuvwxyzf I }~
Number of slices = 28 NOTE: Contents of the last slice are ignored.
Reading .tb file to convert data-

There are two items of interest in the above output. First, the lines in italics show the
output of the tb_to_nodes program which is executed as a result of choosing the
Generate Vector Database option in the ID Workbench. The .cap file is the GenRad
.CAP file shown in Figure Bl. The .nodes file is the input for the nodes_to_tgo.x
program, which is executed as part of the GR2751 Translator (TGO) option in the ID
Workbench. The second item of interest is that in creating the .nodes file, the signal
information associated with the new_slice, strobe and power signals does not get
written to the .nodes file. This information is not required for creation of the GenRad
.TGO file. The //new_slice" signal, as described in Reference [4], is used to inherit any
cycle time information contained in the original simulation stimulus file. Also, the
strobe signal is used to determine when in the .TGO file strobes are required. Power
signal information is in the <filename>.tb file for creation of the GenRad .CAP file,
which is used by the Genisys™ tools to create a probing database.

B-12

APPENDIX C

EXAMPLE FIGURES AND FILES

C-l

FIGURE Cl. EXAMPLE CIRCUIT

C-2

— Model For Vidal's Test Circuit

library ieee;
use ieee.std_logic_l 164.all;

-- Declare Test Bench Entity.

— T^-l will extract only the external pins identified in the port
— declaration below; any generics will be copied, as is, into the
-- test bench.

Entity VIDAL_MODEL is
port(

Pl_l : in stdjogic := 'X';
Pl_2 : in stdjogic := 'X';
Pl_3 : in stdjogic := 'X';
Pl_4 : in stdjogic := 'X';
Pl_5 : in stdjogic := 'X';
Pl_6 : out stdjogic := 'X';
Pl_7 : in stdjogic := 'X';
VCC : in stdjogic := T;
GND : in stdjogic := '0');

~ Only signals of type stdjogic or stdJogic_vector are valid
— signal types within the entity declaration in this version of
— T^-l. T^-l also requires that all logic vector signals be defined
— with integer indices (variables and constants are not allowed).
— Example:
-- a: in std Jogic_vector (0 to 31); -- legal
— b: in std Jogic_vector (x to y); -- illegal

end VIDAL_MODEL;

FIGURE Cl.l VHDL STRUCTURAL DESCRIPTION FOR EXAMPLE CIRCUIT

C-3

— Architecture of Test Bench

architecture STRUCTURE of VIDALJMODEL is

— T^-l will extract all component blocks, signals and 'for'
-- statements that are within the above 'architecture' statement
-- and the 'begin' statement and put it into the appropriate place
— in the test bench.

signal Y1_A3 : stdjogic := 'X';
signal Y2_P12 : stdjogic := 'X';
signal Y3_P4 : stdjogic := 'X';
signal Y4_P9 : stdjogic := 'X';

signal P7_B3 : stdjogic := 'X';
signal P10_B1 JP5 : stdjogic := 'X';
signal P15_B2 : stdjogic := 'X';

component TTLOO
port (

Al: in stdjogic; — pin 1
Bl: in stdjogic; — pin 2
Yl: buffer stdjogic; — pin 3

A2 : in stdjogic; - pin 4
B2 : in stdjogic; — pin 5
Y2 : buffer stdjogic; - pin 6

A3 : in stdjogic; — pin 9
B3 : in stdjogic; — pin 10
Y3 : buffer stdjogic; — pin 8

FIGURE C1.1: CONTINUED

C-4

A4 : in std_logic; — pin 12
B4 : in std_logic; — pin 13
Y4 : buffer std_logic; — pin 11
VCC : in stdjogic := T;
GND : in stdjogic := '0';
);

end component;

— Although shown here following the component
— delcaration statement, the following 'for' statment can appear
— anywhere within the file. For instance, a seperate
— configuration section could be used containing all of the
— needed 'for' statements.

for all:TTL00 use entity work.TTLOO(stru);

component TTL175
port(

PI : in stdjogic; -- CLR
P2 : buffer stdjogic;-- Ql
P3 : out stdjogic;--Q1B
P4 : in stdjogic; -- Dl
P5 : in stdjogic; -- D2
P6 : out stdjogic; -- Q2B
P7 : buffer stdjogic; - Q2

GND: in stdjogic := '0';
P9 : in stdjogic; -- CLK
P10 : buffer stdjogic; - Q3
Pll: out stdjogic; - Q3B
P12 : in stdjogic; -- D3
P13 : in stdjogic; - D4
P14 : out stdjogic; -- Q4B
P15 : buffer stdjogic; - Q4
VCC: in stdjogic := '1');

end component;

for all:TTL175 use entity work.TTL175(BEHAVIORAL);

FIGURE Cl.l: CONTINUED

C-5

begin

— The T2-1 tool will extract all generic maps and port maps
— appearing between the 'begin' and 'end' statements.

Ul:TTLOO
PORT MAP(

Al =>P1_1,
Bl =>P10_B1_P5/

Yl =>Y1_A3,

A2 =>P1_2,
B2 =>P15_B2,
Y2 =>Y2_P12/

A3 =>Y1_A3,
B3 =>P7_B3,
Y3 => Y3JP4,

A4 =>P1_4,
B4 =>P1_5,
Y4 =>Y4_P9,

GND => GND,
VCC => VCC);

U2 : TTL175
PORT MAP(

PI =>P1_7,
P2 => Pl_6,
P3 =>OPEN,

FIGURE C1.1: CONTINUED

C-6

— any unused pins on a component MUST be designated as open as
— shown here. True 'no -connects' on a device do not have to be
— accounted for in the model. All other pins, including power
-- pins, MUST be accounted for in the model (e.g., VCC and GND must
— be declared).

P4 =>Y3„P4,
P5 =>P10_B1_P5,
P6 => OPEN,
P7 => P7_B3,
GND => GND, - pin 8
P9 =>Y4_P9,
P10 => P10JB1JP5,
Pll =>OPEN,
P12 => Y2_P12,
P13 => Pl_3,
P14 =>OPEN,
P15 => pl5„B2,
VCC => VCC); - pin 16

END STRUCTURE;

FIGURE Cl.l: CONTINUED

C-7

- Filename : tb_vidal.VHD
- Created : 16-Jun-1994 13:51:42

- Created by: T2-1 Version 1.1

IIT Researchlnstitute
201 Mill Street
Rome, NY 13440
(315)339-7119
runkle@mail.iitri.com
wswavely@mail.iitri.com
jbeaton@mail.iitri.com

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;
USE WORK.TC_WAVES_LOGIC.all; - TC will be the prefix of TISSS dataset
USE WORK.WAVES_OBJECTS.all;
USE WORK.WAVEFORM_GENERATOR.all; - The package in the dataset MUST
USE STD.TEXTIO.all; - BE called WAVEFORM_GENERATOR.

— Declare Test Bench Entity

Entity TEST_BENCH is
end;

— Architecture of Test Bench

architecture WAVES_APP of TEST_BENCH is

— The external pins from the port map

SIGNAL Pl_l : STD_LOGIC := 'X';
SIGNAL Pl_2 : STD_LOGIC := 'X*;
SIGNAL Pl_3 : STD_LOGIC := 'X';
SIGNAL Pl_4 : STD_LOGIC := 'X';
SIGNAL Pl_5 : STDJLOGIC := 'X';
SIGNAL W_P1_6 : STD_LOGIC := 'X';
SIGNAL Pl_6 : STDJLOGIC := 'X';
SIGNAL Pl_7 : STD_LOGIC := 'X';
SIGNAL VCC : STD_LOGIC := 1';
SIGNAL GND : STDJLOGIC := '0';

FIGURE C1.2: SAMPLE WAVES COMPATIBLE VHDL TESTBENCH PRODUCED BY THE "WAVES
Testbench Writer" TOOL

C-8

— The internals pins

SIGNAL Y1_A3 : STDJLOGIC := 'X';
SIGNAL Y2_P12 : STDJLOGIC := 'X';
SIGNAL Y3_P4 : STD_LOGIC := 'X';
SIGNAL Y4_P9 : STD_LOGIC := 'X';
SIGNAL P7_B3 : STDJLOGIC := 'X';
SIGNAL P10_B1_P5 : STD_LOGIC := 'X';
SIGNAL P15_B2 : STD_LOGIC := 'X';
SIGNAL NEW_SLICE: STD_LOGIC;

SIGNAL WAVES DATA : WAVES JPORTLIST;

— The components were lifted from the model

component TTLOO
port (

Al: in std_logic;
Bl : in std Jogic;
Yl: buffer std_logic;

A2: in std_logic;
B2 : in std Jogic;
Y2: buffer stdjbgic;

A3: in std_logic;
B3 : in std_logic;
Y3: buffer std_logic;

A4: in std Jogic;
B4 : in std Jogic;
Y4: buffer std_logic;
VCC: in std Jogic := 1';
GND: in stdjogic := '0');

end component;

FIGURE C1.2. CONTINUED

C-9

component TTL175
port(

PI : in stcMogic;
P2 : buffer stcMogic;
P3 : out std_logic;
P4 : in stdjogic;
P5 : in stcMogic;
P6 : out stdjogic;
P7 : buffer std_logic;
GND : in stdjogic := '0';
P9 : in stdjogic;
P10 : buffer stdjogic;
Pll: out stdjogic;
P12: in stdjogic;
P13: in stdjogic;
P14: out stdjogic;
P15 : buffer stdjogic;

VCC : in stdjogic := 1');
end component;

for alLTTLOO use entity work.TTLOO(stru);
for all:TTL175 use entity work.TTL175(BEHAVIORAL);

-- Define a file type for the CAPTURE data

file CAPTURE_FILE : TEXT is out "tc„cap.out";

— Convert STD_LOGIC to a character

function TO_CHAR(VALUE : stdjogic; DIRECT : character; DRIVE_VALUE : logicjvalue)
return character is

begin

if VALUE = 'X' then
case DRIVE J/ALUE is
when DRIVE J) => return 'C;
when DRIVE1 => return 'D';
when others => return 'X';

end case;
else
if DIRECT = T then
case VALUE is
when '0' => return '0';
when T => return '1';
when 'Z' => return U';
when U' => return U';
when '-' => return '-';

end case;
FIGURE C1.2. CONTINUED

C-10

else - DIRECT = 'O'
case VALUE is
when 'L' => return 'L';
when 'H' => return 'H';
when '0' => return 'L';
when 1' => return 'H';
when 'Z' => return 'U';
when 'U' => return 'U';
when '-' => return '-';

end case;
end if;
end if;

end TO_CHAR;

function TO_CHAR(VALUE : in std_logic; DIRECT : character) return character is
begin

if DIRECT = T then
case VALUE is
when '0' => return '0';
when '1' => return '1';
when 'X' => return 'X';
when 'Z' => return 'Z';
when U' => return U';
when '-' => return '-';

end case;
else - DIRECT = 'O'
case VALUE is
when L' => return L';
when 'H' => return 'H';
when '0' => return 'L';
when '1' => return 'H';
when 'X' => return 'X';
when 'Z' => return 'X';
when 'U => return U';
when '-' => return '-';

end case;
end if;

end TCLCHAR;

- These LOGICJVALUEs will be the standard names and must be the
- same in all TISSS WAVES DATASETS: UNKNOWN, UNJNT, HI_IMP,
- DONTJZARE, DRIVEJ), DRIVEJL, SENSEJ), and SENSEJL

function ToJU64(VALUE : in Logic_value) return Stdjogic is
begin

FIGURE C1.2. CONTINUED

C-ll

case VALUE is
when UNKNOWN => return '-';
when UNJNT => return 'U;
when HIJMP => return Z';
when DONT_CARE => return 'X';
when DRIVE_0 => return '0';
when DRIVEJ => return T;
when SENSE_0 => return '0';
when SENSE J => return T;

end case;

end To J164;

— Determine if WAVES is driving model, if not drive Z.

function TCLDRIVE(VALUE2 : Logic_value) return Std Jogic is
begin

case VALUE2 is
when UNKNOWN => return 'Z';
when UNJNT => return Z';
when HIJMP => return Z';
when DONT.CARE => return 'Z';
when DRIVE J) => return '0';
when DRIVE J => return T;
when SENSE_0 => return 'Z';
when SENSE J => return 'Z';

end case;

end TOJ3RIVE;

— Determine direction of signal for captured ou tput (BIDIRECTIONAL I/O)

function FINDJDIRECT(value3 : Logic_value) return character is
begin

case value3 is
when UNKNOWN => return 'O';
when UNJNT => return 'O';
when HIJMP => return 'O';
when DONT_CARE => return 'O';
when DRIVEJ) => return T;
when DRIVEJ => return T;
when SENSE J) => return 'O';
when SENSE J => return 'O';

end case;

end FIND J)IRECT;

FIGURE C1.2. CONTINUED

C-12

— Define the translate function

begin
WAVES : Waveform (WAVES_DATA);

TRANSLATE:
process* WAVES_DATA)
begin

Pl_l <= To_1164(Logic_value'val(WAVES_DATA.WPL(l).L_VALUE));
Pl_2 <= To_1164(Logic_valueVal(WAVES_DATA.WPL(2).L_VALUE));
Pl_3 <= To_1164(Logic_value'val(WAVES_DATA.WPL(3).L_VALUE));
Pl_4 <= To_1164(Logic_value'val(WAVES_DATA.WPL(4).L_VALUE));
Pl_5 <= To_1164(Logic_value'val(WAVES_DATA.WPL(5).L_VALUE));
W_P1_6 <= To_1164(Logic_value'val(WAVES_DATA.WPL(6).L_VALUE));
Pl_7 <= To_1164(Logic_value*val(WAVES_DATA.WPL(7).L_VALUE));
VCC <= To_1164(Logic_value'val(WAVES_DATA.WPL(8).L_VALUE));
GND <= To_1164(Logic_value'val(WAVES_DATA.WPL(9).L_VALUE));
NEW_SLICE<=To_1164(Logic_value'val(WAVES_DATA.WPL(10).L_VALUE));
end process;

Ul: TTLOO
PORTMAP(Al =>P1_1,

Bl =>P10_B1_P5,
Yl =>Y1_A3,
A2 => Pl_2,
B2 =>P15_B2,
Y2 =>Y2_P12,
A3 =>Y1_A3,
B3 => P7_B3,
Y3 => Y3_P4,
A4 =>P1_4,
B4 => P1.5,
Y4 =>Y4_P9,
VCC => VCC,
GND => GND);

U2: TTL175
PORTMAP(Pl =>P1_7,

P2 =>P1_6,
P3 => open,
P4 =>Y3_P4,
P5 =>P10_B1_P5,
P6 => open,
P7 => P7_B3,
GND => GND,

FIGURE C1.2. CONTINUED

C-13

P9 =>Y4_P9,
P10 => P10J31JP5,
Pll => open,
P12 => Y2_P12,
P13 => Pl_3,
P14 => open,
P15 => pl5_B2,
VCC => VCC);

-- Write CAPTURE data to a disk file

CAP_P1__1 :
process(Pl_l)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_1";
variable STATE : character;
variable SIM_TIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Pl_l,DIRECT);
SIM_TIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE„FILE, LOUT);

end process;

CAP_P1_2:
process(Pl_2)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_2";
variable STATE : character;
variable SIM_TIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Pl_2,DIRECT);
SIM_TIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

FIGURE C1.2. CONTINUED

C-14

CAP_P1_3:
process(Pl_3)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_3";
variable STATE : character;
variable SIM_TIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Pl_3,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTUREJFILE, LOUT);

end process;

CAPJP1_4:
process(Pl_4)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_4";
variable STATE : character;
variable SIMJTIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Pl„4,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_P1_5 :
process(Pl_5)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIGJNAME : string (1 to 4) :="P1_5";
variable STATE : character;
variable SIMJTIME: time;
variable SPACE : character := '';

FIGURE C1.2. CONTINUED

C-15

begin
STATE := TO_CHAR(Pl_5,DIRECT);
SIM_TIME := now;
write(LOUT, SIGJNTAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_P1_6:
process(Pl_6)
variable VALUE3: Logic_value
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_6";
variable STATE: character;
variable SIM_TIME: time;
variable SPACE : character := '';

begin
VALUE3 := Logic_value'val(WAVES_DATA.WPL(6).L_VALUE);
DIRECT := FIND _DIRECT (VALUE3);
STATE := TO_CHAR(Pl_6,DIRECT, VALUE 3);
SIM_TIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_Pl_6_STROBE:
process(W_P1_6)

variable VALUE3: Logic_value;
variable DIRECT: character;
variable LOUT: line;
variable SIG_NAME : string (1 to 5) :="*P1_6";
variable STATE: character;
variable SIM_TIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(W_Pl_6/DIRECT);
VALUE3 := Logic_value'val(WAVES_DATA.WPL(6).L_VALUE);
DIRECT := FIND _DIRECT (VALUE3);
IF STATE = 'H' or STATE = 'L' or STATE = 'X' then

STATE := T;
ELSE

STATE := '0';
end if;

FIGURE C1.2. CONTINUED

C-16

SIMJTIME := now;
write(LOUT/ SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIMJTIME/ns);
writeline(CAPTURE_FILE, LOUT);

if Pl_6'stable then
SIG_NAME := "Pl_6";
STATE := TO_CHAR(Pl_6, DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end if;
end process;

CAP_P1_7:
process(Pl_7)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 4) :="P1_7";
variable STATE: character;
variable SIMJTIME: time;
variable SPACE : character := ";

begin
STATE := TO_CHAR(Pl J7,DIRECT);
SIMJTIME := now;
write(LOUT, SIGJNAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIMJTIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_VCC :
process(VCC)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 3) :="VCC";
variable STATE: character;
variable SIMJTIME: time;
variable SPACE : character := '';

FIGURE C1.2. CONTINUED

C-17

begin
STATE := TO_CHAR(VCC,DIRECT);
SIM_TIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_GND:
process (GND)
variable DIRECT : character :=T;
variable LOUT: line;
variable SIG_NAME : string (1 to 3) :="GND";
variable STATE : character;
variable SIM_TIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(GND,DIRECT);
SEvlJTME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_Y1_A3:
process(Y1_A3)
variable DIRECT : character :='0;
variable LOUT: line;
variable SIGJNAME : string (1 to 5) :="Y1_A3";
variable STATE : character;
variable SIM_TIME : time;
variable SPACE : character := ' ';

begin
STATE := TO_CHAR(Yl_A3,DIRECT);
SIMJTIME := now;
write(LOUT, SIG__NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

FIGURE C1.2. CONTINUED

C-18

CAP_Y2_P12:
process(Y2„P12)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 6) :="Y2JP12";
variable STATE : character;
variable SIM_TIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Y2_P12,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT/ SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_Y3JP4:
process(Y3JP4)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 5) :="Y3_P4";
variable STATE : character;
variable SIMJTIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(Y3_P4/DIRECT);
SIM_TIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTUREJTLE, LOUT);

end process;

CAP_Y4_P9 :
process(Y4_P9)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIGJMAME : string (1 to 5) :="Y4_P9";
variable STATE: character;
variable SIMJTIME : time;
variable SPACE : character := '';

FIGURE C1.2. CONTINUED

C-19

begin
STATE := TO_CHAR(Y4_P9,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_P7_B3:
process(P7_B3)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 5) :="P7_B3";
variable STATE : character;
variable SIMJTIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(P7_B3,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

CAP_P10_B1_P5:
process(P10_B1_P5)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 9) :="P10_B1_P5";
variable STATE : character;
variable SIMJTIME: time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(P10_B1_P5,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);-
write(LOUT, SIMJTIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

FIGURE C1.2. CONTINUED

C-20

CAP_P15_B2 :
process(P15_B2)
variable DIRECT : character :='0';
variable LOUT: line;
variable SIG_NAME : string (1 to 6) :="P15_B2";
variable STATE : character;
variable SIMJTIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(P15_B2,DIRECT);
SIMJTIME := now;
write(LOUT, SIGJMAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

='0";

CAP_NEW_SLICE :
process(NEWJSLICE)
variable DIRECT : character :=
variable LOUT: line;
variable SIG_NAME : string (1 to 9) :="NEW_SLICE";
variable STATE: character;
variable SIMJTIME : time;
variable SPACE : character := '';

begin
STATE := TO_CHAR(NEW_SLICE,DIRECT);
SIMJTIME := now;
write(LOUT, SIG_NAME);
write(LOUT, SPACE);
write(LOUT, STATE);
write(LOUT, SPACE);
write(LOUT, SIM_TIME/ns);
writeline(CAPTURE_FILE, LOUT);

end process;

END waves_a -aPP^

FIGURE C1.2. CONTINUED

aU.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-20178

C-21

MISS/ON

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportabiiity;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Scienc® and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

